Microsoft SQL Server долгое время считается золотым стандартом для критически важных рабочих нагрузок баз данных среднего класса. Однако полноценное использование возможностей SQL Server требует соответствующей инфраструктуры.
Партнерство между Lenovo для линейки ThinkAgile VX Series и VMware в рамках технологии vSAN Express Storage Architecture (ESA) позволяет создать передовую гиперконвергентную инфраструктуру (HCI), работающую на новейших аппаратных платформах. Это решение разработано для удовлетворения сложных потребностей современных организаций, ориентированных на данные.
В VMware vSAN 8 и vSAN ESA произошли значительные изменения, которые включают в себя использование высокопроизводительных NVMe-дисков и новый, быстрый и эффективный путь передачи данных. vSAN ESA обеспечивает эффективность RAID 5/6 с производительностью RAID 1.
Тестирование показало, что 8-узловой кластер vSAN ESA на Lenovo Agile VX Series может обеспечить 720 000 агрегированных IOPS по мере увеличения количества виртуальных машин SQL Server с одной до восьми. Результаты подтверждают последовательную масштабируемость и надежную производительность для рабочих нагрузок.
В документе приведены обширные рекомендации по проектированию и сайзингу, отчеты о проверке решений и лучшие практики для администраторов и владельцев систем на основе Microsoft SQL Server.
Таги: VMware, vSAN, ESA, Storage, Microsoft, SQL, Performance
Дункан Эппинг поднял вопрос о том, необходимо ли указывать 2 параметра Isolation Address в растянутом кластере VMware vSAN (stretched cluster), которые используются механизмом VMware HA.
Вопрос всплыл в связи с документацией по vSAN, где говорится о том, что вам нужно иметь 2 адреса на случай изоляции кластера в целях разумной избыточности:
Некоторые пользователи спрашивали, могут ли они использовать один Gateway Address от Cisco ACI, который будет доступен в обоих местах, даже если произойдет разделение, например, из-за сбоя ISL. Если это действительно так, и IP-адрес действительно доступен в обоих местах во время таких сбоев, то достаточно использовать один IP-адрес в качестве адреса изоляции.
Тем не менее, вам нужно удостовериться, что IP-адрес пингуется через сеть vSAN при использовании vSAN в качестве платформы для расширенного хранения данных. Ведь когда vSAN активирован, vSphere HA использует именно сеть vSAN для управляющих сигналов. Если адрес пингуется, вы можете просто задать адрес изоляции, установив расширенную настройку "das.isolationaddress0". Также рекомендуется отключить использование стандартного шлюза управляющей сети, установив "das.usedefaultisolationaddress" в значение false для сред, использующих vSAN в качестве платформы.
С появлением архитектуры vSAN Express Storage Architecture (ESA) в vSAN 8, которая была представлена в августе 2022 года, VMware хотела предоставить простой способ для клиентов развертывать кластеры с соответствующими характеристиками оборудования и сети. Программа vSAN ReadyNode для ESA гарантировала, что клиенты могут приобретать серверы, предварительно настроенные для выполнения конкретных минимальных требований к оборудованию для ESA, предоставляя при этом достаточную гибкость для удовлетворения требований к емкости и производительности среды пользователей.
VMware не только внесла значительные улучшения в ESA в vSAN 8 U1 и vSAN 8 U2, но и улучшила совместимость с оборудованием, предоставляя клиентам и партнерам простой и гибкий путь для создания поддерживаемой конфигурации. Давайте посмотрим, что поддерживается на данный момент.
Гибкость программы ReadyNode
Благодаря расширенной совместимости с устройствами хранения данных с интенсивным чтением и введению новых готовых узлов vSAN-ESA-AF-0 для небольших датацентров и периферийных сред, тип оборудования, совместимый с ESA, становится более гибким. vSAN ReadyNodes могут быть приобретены с использованием простого, единого SKU, но конфигурации, соответствующие vSAN ESA, также могут быть получены путем "эмуляции" конфигурации ReadyNode с использованием отдельных компонентов оборудования от сертифицированных поставщиков ReadyNode.
Это означает, что клиенты могут выбрать платформу сертифицированную по программе ESA ReadyNode от производителя серверов, указанную в VMware Compatibility Guide (VCG) for vSAN ESA, и далее могут создавать конфигурацию сервера с использованием отдельных аппаратных компонентов, как они указаны в данной спецификации ReadyNode, эмулируя реальный узел ReadyNode, приобретенный с использованием единого SKU. Этот подход может помочь клиентам, которые решили не покупать ReadyNode через официальный SKU, но имеют такое же оборудование (или лучше), найденное в желаемой классификации ReadyNode.
Термин «Emulated ReadyNode» просто относится к тому, из каких компонентов был собран готовый узел ReadyNode. Он воспринимается и поддерживается VMware и поставщиками ReadyNode точно так же, как узлы ReadyNodes, приобретенные с использованием единого SKU.
Поддержка таких эмулированных систем ReadyNode предоставляет большую гибкость при закупке оборудования и развертывании серверов, которые могут работать на vSAN ESA. Этот вариант применяется только к оборудованию и платформам, сертифицированным для ESA, а не к стандартному оборудованию серверов от производителей, не входящих в список ReadyNode. Тип подхода "собери сам" доступен только при использовании оригинальной архитектуры хранения vSAN (Original Storage Architecture, OSA).
Ну а в статье KB 90343 рассказано о том, что вы можете и не можете менять в конфигурации узлов для vSAN ESA ReadyNode:
Сегодня мы расскажем еще о некоторых функциях раздела Core Storage, которые появились в VMware vSAN 8 U2:
Поддержка расширения диска vVols в режиме онлайн с Oracle RAC
В этом выпуске, помимо MS WSFC, была добавлена поддержка горячего расширения для дисков Oracle RAC, используя режим Multi-writer. Это можно выполнить как на дисках SCSI, так и на дисках NVMe vVols. Кроме того, это также позволяет клиентам переходить с томов RDM на новые хранилища.
vVols NVMe миграция в режиме in-band
Поддержка миграции пространств имен NVMe vVol между группами ANA. Эта функциональность обеспечивает эквивалентность примитиву перепривязки SCSI и позволяет администратору хранилища балансировать нагрузки IO между устройствами PE.
Автоматическое восстановление из статуса PDL для vVol PEs
Ранее, когда PE переходил в состояние PDL (Physical Device Loss) и затем возвращался, стек PSA должен был перезагрузить устройство (уничтожить и снова обнаружить пути). Это могло произойти только после того, как объекты vVol, использующие PE, были закрыты. С этим релизом, виртуальная машина будет автоматически выключена, когда обнаруживается, что PE, к которому привязаны vVols виртуальной машины, находится в состоянии PDL. Это дополнительно повышает устойчивость и восстановление при определенных сбоях подсистемы хранения.
Включение поддержки MPP сторонних производителей для NVMe vVols
Позволяет сторонним политикам многопутевого доступа (MPP) поддерживать NVMe vVols. Это дает возможность партнерам VMware использовать свои клиентские MPP.
Поддержка UNMAP для конфигурационного vVol
Начиная с vSphere 8.0 U1, конфигурационные vVols теперь создаются как тонкие диски с максимальным размером 255 ГБ и форматируются в VMFS-6. В этом релизе поддерживается командная строка (esxcli) для работы с командой unmap конфигурационных vVols.
Компания VMware опубликовала интересное техническое видео с обзором всех новых возможностей средства создания отказоустойчивых хранилищ vSAN 8 Update 2, работающих на базе обновленной платформы виртуализации vSphere 8 Update 2.
Видео длится 25 минут и покрывает все технические аспекты новых функций платформы, включая новую архитектуру vSAN Max, о которой рассказывается во всех подробностях.
Напомним также, что ранее VMware опубликовала еще одно полезное видео о новых возможностях vSphere 8 Update 2:
Ну и, конечно, нельзя не напомнить об этой ссылке на хранилище технических статей и документов о платформе VMware vSAN.
На прошлой неделе мы рассказали о новых возможностях обновленной платформы виртуализации VMware vSphere 8 Update 2, а сегодня поговорим о нововведениях решения для создания отказоустойчивых кластеров VMware vSAN 8 Update 2, а также недавно анонсированном решении VMware vSAN Max.
Продолжая свои начинания по поддержке наиболее критически важных рабочих нагрузок клиентов в плане гибкости, производительности и эффективности, VMware представляет vSAN 8 Update 2 и VMware vSAN Max.
Решение vSAN Max, работающее на архитектуре vSAN Express Storage - это новое предложение в семействе vSAN, которое позволит получить модель развертывания на базе подписки для разрозненных хранилищ, объединяющих петабайты информации на платформе vSphere. Используя vSAN Max, пользователи смогут масштабировать хранилище независимо от вычислительных мощностей для повышения уровня гибкости при поддержке всех своих рабочих нагрузок. Новое предложение vSAN Max будет лицензировано отдельно от существующих версий vSAN. vSAN Max будет предлагаться по подписке и, как планируется, будет лицензирован по метрике на тебибайт (TiB, близко к терабайту).
Кроме нового vSAN Max, улучшения в архитектуре vSAN Express Storage обеспечат новые уровни производительности, а новые функции на платформе vSAN улучшат повседневные операции и пользовательский опыт.
1. Объединенное хранилище масштабов петабайтов
Организации сегодня полагаются на множество приложений для ведения бизнеса, каждое из которых имеет уникальные требования к вычислительной мощности, объему хранения и производительности. Все чаще используются передовые аналитические инструменты, приложения ИИ и приложения, созданные изначально для облачных сервисов, в то время как реляционные базы данных и виртуальные рабочие столы по-прежнему остаются востребованными. Растущее разнообразие рабочих нагрузок и их динамика масштабирования создает потребность в гибкой инфраструктуре, которая позволяет этим критически важным приложениям масштабироваться по мере роста потребностей бизнеса.
С введением vSAN Max клиенты получат больший выбор для развертывания vSAN тем способом, который максимально оптимизирует использование ресурсов и снижает затраты. vSAN Max даст уникальную возможность настраивать кластер vSAN для использования в качестве общего хранилища для кластеров vSphere. Он создан на основе vSAN ESA и дает новые преимущества для клиентов, желающих быстро масштабировать хранилище с высокой производительностью и надежностью. vSAN Max предоставит беспрецедентные уровни масштабируемости и экономической эффективности, повышая отдачу при запуске нагрузок с интенсивным использованием хранилища на гиперконвергентной инфраструктуре (HCI), оптимизируя использование ресурсов и снижая TCO до 30%.
Применяя возможности горизонтального и вертикального масштабирования, пользователи будут иметь полную автономию в том, как увеличивать емкость. Узлы vSAN Max будут предлагать до 7 раз больше плотности, чем узлы HCI, и смогут масштабироваться до более чем 8.5 петабайта в кластере. Клиенты не только смогут масштабировать емкость, но и производительность; каждый добавленный узел в кластер vSAN Max увеличит доступную производительность. И поскольку vSAN Max создан на архитектуре vSAN Express Storage, он может вместить огромные наборы данных и соответствовать строгим требованиям к производительности и надежности, предоставляя до 3,6 миллиона IOPS на кластер хранилищ.
Как и всегда с vSAN, пользователи смогут управлять всеми средами - как традиционной моделью HCI, так и разобщенной моделью Max - из единого интерфейса.
2. Платформа высокой производительности
vSAN 8 U2 вводит несколько улучшений основной платформы, которые обеспечивают совершенно новые уровни производительности, долговечности данных и надежности в архитектуре Express Storage.
Интегрированные файловые службы (Integrated File Services) для Cloud Native и традиционных рабочих нагрузок
vSAN 8 U2 добавляет файловые сервисы vSAN в архитектуру Express Storage. Клиенты получат преимущества в производительности и эффективности vSAN ESA для своих сред, использующих файловые сервисы vSAN. Все возможности, присутствующие в файловых сервисах vSAN на оригинальной архитектуре хранения (OSA) в предыдущих версиях vSAN, будут расширены для файловых сервисов vSAN на ESA: улучшенная эффективность использования пространства; лучшая производительность; и меньшие домены отказов.
Улучшенная производительность для разобщенных сред (Disaggregated Environments)
vSAN 8 U1 представил новый адаптивный путь записи на архитектуре Express Storage с целью улучшения производительности для рабочих нагрузок, которые выполняли большое количество записей с высокой частотой, чтобы записать данные альтернативным, оптимизированным способом. Теперь это улучшение имплементировали в разобщенные топологии vSAN 8 U2 с vSAN Max. Теперь ВМ, работающие в кластере vSphere или vSAN и использующие ресурсы хранения другого кластера vSAN ESA или кластера vSAN Max, также смогут использовать эту возможность.
Внедрение преимуществ vSAN ESA для малых дата-центров и Edge-локаций
vSAN 8 U2 вводит два новых улучшения, которые предоставят гораздо больше гибкости для клиентов, заинтересованных в использовании архитектуры ESA. Во-первых, это введение нового профиля ReadyNode — AF-0 ReadyNode, предназначенного для малых дата-центров и периферийных сред (Edge). Благодаря более низким требованиям к оборудованию, таким как 10Gb NICs, это означает, что клиенты смогут получать преимущества vSAN ESA в средах, которые не требуют производительности, предоставляемой более высокими профилями ReadyNode. Во-вторых, это введение поддержки устройств хранения с меньшим ресурсом записи, "Ready-Intensive". Эти устройства с меньшим ресурсом могут использоваться во многих профилях ReadyNode и предложат более выгодную цену для сред, которые, возможно, не имеют приложений с интенсивными операциями ввода/вывода.
3. Улучшенная управляемость
Производительность, устойчивость и гибкость теряют свой смысл, если решение сложно в эксплуатации. vSAN 8 U2 предлагает несколько новых улучшений, которые упростят повседневные операции администраторов, оптимизируют обнаружение проблем и ускорят время их решения.
Интеллектуальная стандартная политика упрощает оптимальную конфигурацию
В vSAN 8 U1 появилась новая функция автоматического управления политиками, которая помогает администраторам настраивать свои новые кластеры vSAN ESA с оптимальными уровнями устойчивости и эффективности. В vSAN 8 U2 эта функция стала еще более мощной. При добавлении или удалении хоста из существующего кластера функция автоматического управления политиками будет оценивать, нужно ли корректировать оптимизированную стандартную политику хранения. Если vSAN определяет необходимость изменения, он позволяет изменить затронутую политику хранения одной кнопкой, которая появится в инициированной проверке health-статуса. В этом случае будет переконфигурирована стандартная политика хранения для кластера с новыми оптимизированными настройками политики.
Отчетность о мощности кластера стала более понятной
В vSAN 8 U2 улучшена отчетность о накладных расходах на емкость для объектов, расположенных в хранилищах данных. Эта новая категория "ESA object overhead" (накладные расходы объекта ESA), размещенная в разделе "Usage breakdown" capacity-дэшборда кластера, сообщает о накладных расходах, связанных с обработкой и хранением данных через лог-структурированную файловую систему vSAN (vSAN LFS). Это улучшение поможет администраторам точнее определить накладные расходы по потреблению емкости в их системе хранения.
Управление устройствами хранения в большом масштабе
Новая возможность prescriptive disk claim в vSAN ESA позволяет администраторам определять стандартизированный результат требований хостов, входящих в кластер, к диску с точки зрения емкости. vSAN затем попытается применить это желаемое состояние ко всем хостам в кластере. Если он не может применить конфигурацию, будет запущено определение состояния здоровья в Skyline Health для vSAN.
Улучшенная безопасность через усовершенствованное управление ключами
Поскольку возможности безопасности инфраструктуры продолжают становиться более сложными, vSAN продолжает адаптироваться под поддержку этих новых возможностей. vSAN 8 U2 поддерживает применение серверов KMS, которые используют атрибут "key expiration" для назначения даты истечения ключа шифрования (Key Encryption Key, KEK). Интеграция с Skyline Health для vSAN будет инициировать отчет о состоянии здоровья при приближении сроков истечения ключа, упрощая управление.
Интуитивное обнаружение ВМ и дисков, потребляющих больше всего ресурсов.
Представление "Top Contributors", появившееся в vSAN 7 U2, предоставляет простой способ определения ВМ, которые создают наибольший спрос на ресурсы, предоставляемые кластером. В vSAN 8 U2 инструмент стал еще лучше, помогая клиентам находить места с наибольшей производительностью не только в любой момент времени, но и в рамках настраиваемых периодов времени.
Администраторы также теперь смогут перемещать элементы в том же виде производительности — будь то IOPS, пропускная способность или задержка, что позволит им быстро оценить ВМ, создающие наибольшую нагрузку на кластер, и определить, не потребляют ли хосты кластера ресурсы непропорционально. Новое представление значительно упрощает устранение проблем с производительностью.
Улучшенное обнаружение узких мест производительности в растянутых кластерах
vSAN I/O Trip Analyzer — это еще один инструмент, улучшенный в vSAN 8 U2, в нем появилась новая возможность проведения анализа рабочих нагрузок, работающих в растянутом кластере. Пользователь легко сможет определить, где в таком кластере происходит основная задержка, а также задержки в других частях стека, которые могут влиять на общую наблюдаемую ВМ задержку.
Упрощенная конфигурация для 2-узловых и растянутых кластеров
vSAN 8 U2 упрощает конфигурацию растянутых кластеров и 2-узловых топологий. Администраторы могут помечать трафик vSAN Witness на виртуальном модуле Witness Appliance через настройки конфигурации VMkernel, а также удалять задачу тэгирования трафика Witness через командную строку. Также был увеличен размер Witness Appliance, доступного для vSAN ESA в vSAN 8 U2. В дополнение к размеру "large", клиенты, работающие с этими конфигурациями, также смогут выбрать модуль размера "medium", который потребляет 2 vCPU и 16GB RAM и поддерживает до 500 ВМ.
Решение VMware vSAN 8 Update 2 запланировано к выпуску в третьем квартале этого года. О новых возможностях платформы можно почитать тут, а вот здесь можно узнать про vSAN Max.
Архитектура Express Storage Architecture (ESA) в vSAN 8 реализует новый способ обработки и хранения данных. Она предоставляет пользователям совершенно новые возможности, обеспечивает лучшую производительность и улучшает эффективность использования дискового пространства, при этом потребляя меньше ресурсов процессора.
В vSAN 8 U1 было представлено два новых, очень полезных улучшения для повышения производительности и эффективности обработки хранимых данных. Давайте рассмотрим это более подробно, чтобы понять, что это за улучшения, и при каких условиях они будут полезны.
1. Алгоритм VMware vSAN ESA Adaptive Write Path
Новый адаптивный путь записи в vSAN 8 U1 предоставляет ESA один из двух методов записи данных. Стандартный путь записи обрабатывает операции ввода-вывода (I/O) разных размеров, в то время как новый альтернативный путь записи оптимизирован для обработки больших I/O от гостевых ВМ. Зачем здесь два способа записи данных? Немного контекста поможет объяснить, почему это так важно.
Современные флэш-устройства предпочитают обрабатывать запись некоторого минимального объема данных. Это помогает уменьшить износ и активности по сбору мусора на устройствах. vSAN ESA была специально разработана для записи блоков данных, оптимально подходящих для этих устройств. Однако ESA также записывает данные эффективным образом с использованием минимального количества усилий. Для достижения этого используется кодирование RAID-5/6, где данные записываются в полные полосы (full stripe writes). Такие записи избегают шагов чтение-модификация-запись, часто связанных с записью данных с использованием erasure codes.
К сожалению, ВМ не всегда записывают данные большими блоками. Часто они обновляют только небольшие объемы данных. Учитывая это, ESA использует журналируемую (log-structured) файловую систему для объединения входящих операций ввода-вывода и сохранения данных и метаданных в журнал, чтобы можно было отправить подтверждение записи как можно быстрее. Это обеспечивает низкую и стабильную задержку для ВМ. Ну а данные из журнала записываются полной полосой (full stripe) позже. Это представляет собой стандартный путь записи (default write path), который был реализован в ESA на платформе vSAN 8.
Однако ВМ часто могут выполнять и крупные записи. Именно адаптивный путь записи в vSAN 8 U1 помогает записывать данные в таких условиях оптимальным образом. Когда vSAN определяет ситуацию, когда идут записи с использованием больших размеров I/O или большого количества ожидающих I/O, он будет использовать новый путь записи для больших I/O.
ESA в vSAN 8 U1 фиксирует эти I/O из буфера в памяти как полную полосу записи (full stripe) и записывает только метаданные в журналируемую файловую систему. Подтверждение записи будет отправлено ВМ, когда данные будут записаны напрямую в полную полосу записи на диск, а метаданные - в устойчивый журнал (durable log). Несмотря на то что основные данные обходят durable log, очень небольшое количество метаданных все же записывается для избыточности на двойное или тройное зеркало (в зависимости от назначенной политики хранения), чтобы гарантировать надежное хранение блоков.
Этот процесс принятия решений vSAN происходит в реальном времени для каждого объекта. В нем предусмотрены механизмы, помогающие определить, соответствуют ли последующие I/O критериям этого пути записи для больших I/O (это происходит в течение нескольких микросекунд) и вернуться к стандартному пути записи, если это не так.
Когда мы рассматриваем, куда записываются данные по умолчанию используя путь записи ESA для объекта, использующего erasure codes для RAID-6, это уменьшает избыточность записи данных с 4,5x (3x для тройного зеркала + 1,5x для полосы RAID-6 4+2 с двойной паритетной проверкой) до всего лишь 1,5x. Это не только сокращает объем вычислений в процессорах, но и уменьшает сетевой трафик. Этот новый адаптивный путь записи приводит к большему объему передачи данных для всех рабочих нагрузок, которые склонны генерировать большие размеры I/O или большое количество ожидающих операций, создавая ситуации, обычно называемые большим количеством необработанных операций ввода-вывода (high outstanding I/O).
2. Оптимизированный процессинг операций ввода-вывода для отдельных объектов VMDK
vSAN ESA улучшает путь данных в стеке обработки таким образом, что позволяет ВМ обрабатывать операции ввода-вывода на новых уровнях. Это не только позволяет быстрее записывать и читать данные, но также помогает инженерным командам VMware выявить новые области в стеке для оптимизации, чтобы еще больше увеличить производительность. Процессы внутри программного обеспечения часто написаны с учетом определенных пределов оборудования и других процессов в стеке. С появлением новых аппаратных технологических решений эти процессы должны быть написаны так, чтобы использовать этот новый потенциал производительности.
vSAN 8 U1 вводит дополнительные вспомогательные потоки в распределенном менеджере объектов - слое стека vSAN, который отвечает за координацию и обработку операции ввода-вывода к объекту. Эти вспомогательные потоки помогают распределять усилия между большим количеством ядер процессора и помогают уменьшить истощение ресурсов процессора, если отдельный процесс перегружен.
Это увеличение параллелизма будет наиболее заметным на ресурсоемких ВМ, обрабатывающих большое количество I/O на VMDK, которые ранее были ограничены стеком каким-либо образом. Будь то критически важные приложения или системы с интенсивной транзакционной активностью, пользователи смогут увидеть улучшение производительности IOPS и пропускной способности до 25%.
Внутренние тесты VMware показали, что это улучшение позитивно скажется на различных типах рабочих нагрузок, включая ВМ, осуществляющие большие последовательные записи, а также мелкие случайные чтения. Даже когда рабочие нагрузки не получают прямой выгоды от этой функции, может быть второй порядок выгоды, где сокращение конкурирующих процессов и ресурсов позволит другим несвязанным действиям, использующим те же общие ресурсы, завершить свои процессы быстрее.
В начале этого года компания VMware выпустила значимое обновление решения vSAN 8 Update 1, где было заявлено достаточно много улучшений в сфере производительности, особенно для архитектуры vSAN ESA (например, Adaptive Write Path).
Сегодня мы посмотрим на то, как эти улучшения в действительности влияют на разные типы приложений в рамках архитектуры кластеров Express Storage Architecture.
1. Приложения для видеонаблюдения
Эти типы решений часто генерируют большие объемы последовательных записей, которые для системы хранения могут быть одним из наиболее требовательных типов профилей рабочей нагрузки, потому что записывается большое количество данных с использованием больших размеров операций ввода-вывода (I/O). При сравнении производительности с OSA (Original Storage Architecture) в VMware обнаружили, что ESA предоставляет улучшение производительности до 240%. То есть вы можете увеличить обмен I/O более чем в три раза, используя то же самое оборудование! Это улучшение демонстрирует возможности нового алгоритма Adaptive Write Path, добавленного в vSAN 8 U1, который может определить, когда происходят такие операции записи, и использовать наиболее оптимальный путь записи для этих условий.
2. Сервисы Apache Kafka
Характеристики потока ввода-вывода Apache Kafka имеют некоторые сходства с приложениями для видеотрансляции, где они могут предъявлять высокие требования к системе хранения. Распределенные решения для потоковой передачи событий, такие как Kafka, были разработаны для удобного масштабирования, и в зависимости от конфигурации, могут генерировать очень большие объемы данных для непрерывной записи. При проведении сравнительных тестов в VMware обнаружили, что ESA обеспечивает улучшение производительности до 80% при работе с Kafka. И это также демонстрирует, насколько хорошо ESA справляется с рабочими нагрузками, генерирующими плотный поток записи.
3. Приложения в сфере здравоохранения
Продукты, использующие реляционные базы данных, являются основой многих приложений в широком спектре отраслей. Отрасль здравоохранения в большой степени зависит от решений Electronic Health Records (EHR), чтобы обеспечивать наилучший уход за пациентами, что является ярким примером "критически важных" приложений. vSAN всегда была идеальной платформой для среды здравоохранения, и с появлением ESA она стала еще лучше. Тесты VMware показали, что эти зависящие от баз данных медицинские приложения предлагают до 50% лучшую производительность при работе на платформе ESA. Это впечатляющий уровень улучшений, учитывая высокую транзакционную природу этих приложений.
4. NoSQL приложения
Некоторые решения используют нереляционную базу данных NoSQL для хранения данных своих приложений. NoSQL может просто масштабироваться и часто используется в ряде открытых и коммерческих приложений. В VMware обнаружили, что приложения на основе NoSQL работают на 15% быстрее с использованием ESA. Это довольно значимо, учитывая что процессор, память и сетевая задержка часто являются наиболее распространенными препятствиями для производительности в среде NoSQL.
Хотя показатели производительности ESA весьма впечатляющи, учитывая постоянные улучшения производительности, внесенные в vSAN OSA, есть и второстепенные преимущества ESA, которыми не следует пренебрегать.
Эффективное использование ресурсов. ESA потребляет меньше аппаратных ресурсов для обработки и хранения данных. Это означает, что в сравнении с OSA вам, возможно, понадобится меньше хостов для удовлетворения тех же требований к рабочей нагрузке, или вы сможете запускать больше рабочих нагрузок на том же объеме оборудования. Оба варианта эффективно снижают затраты на владение виртуальной средой.
Повышенная стабильность и производительность. Более эффективный стек хранения уменьшает спрос на физические ресурсы, такие как процессор, и может помочь повысить стабильность уровня производительности, предоставляемого гостевым ВМ. Это может быть особенно важно для систем, которые являются критически важными и которые должны иметь не только низкий уровень задержек, но и стабильность в плане производительности.
Лучшая эффективность использования пространства. vSAN ESA предлагает улучшенную эффективность использования пространства без компромиссов. В отличие от OSA, он может надежно хранить данные с использованием кодирования RAID-5/6 при производительности на уровне RAID-1. Это обеспечивает гарантированную эффективность использования пространства при надежном хранении данных. ESA также может сжимать данные с минимальным использованием ресурсов и даже уменьшать использование пропускной способности канала.
Проще в управлении. Идея "производительности без компромиссов" также улучшает управление. Рекомендации по оптимизации для достижения наилучшей возможной производительности стали проще с vSAN ESA (подробнее об этом рассказано тут).
На этом пока все, ну а завтра мы расскажем, собственно, о самом механизме Adaptive Write Path и других нововведениях VMware vSAN 8 Update 1.
Дункан Эппинг в своем блоге описал ситуацию, когда один из администраторов распределенного кластера vSAN увидел множество сообщений об ошибках, говорящих о том, что vSphere HA не мог перезапустить определенную виртуальную машину во время сбоя межсайтового соединения ISL.
Бывает это в следующей типовой конфигурации кластера vSAN:
Предположим, что Datacenter A - это "preferred site", а Datacenter B - это "secondary site". Если между датацентром A и датацентром B происходит сбой ISL, компонент Witness, находящийся на третьей площадке, автоматически привяжет себя к датацентру A. Это означает, что ВМ в датацентре B потеряют доступ к хранилищу данных vSAN.
С точки зрения кластера HA, у датацентра A всегда будет Primary-узел (ранее он назывался Master), он же есть и у датацентра B. Первичный узел обнаружит, что есть некоторые ВМ, которые больше не работают, и он попытается перезапустить их. Он попытается сделать это на обеих площадках, и конечно, сайт, где доступ к хранилищу данных vSAN потерян, увидит, что перезапуск не удался.
А вот и важный момент, в зависимости от того, где/как сервер vCenter подключен к этим площадкам. Он может получать, а может и нет информацию об успешных и неудачных перезапусках. Иногда бывают ситуации (в зависимости от архитектуры и характера сбоя), когда сервер vCenter может общаться только с primary-узлом в датацентре B, и это приводит к сообщениям о неудачных попытках перезапуска, хотя на самом деле все ВМ были успешно перезапущены в датацентре A.
В этом случае интерфейс может дать разъяснение - он даст вам информацию о том, какой узел является первичным, и также сообщит вам о либо об "изоляции сети" (network isolation) или о "разделении сети" (network partition) в соответствующих разделах разделах панели Hosts. При сбое ISL - это, конечно же, разделение сети.
На днях компания VMware сделала анонс большого обновления своей архитектуры VMware Cloud Foundation версии 5.0. Этот крупный релиз платформы предлагает дополнительную масштабируемость, безопасность и несколько ключевых улучшений, которые направлены на соответствие требованиям для инфраструктур IaaS, упрощают развертывание облачных услуг на собственных площадках и обеспечивают дополнительную защиту от кибератак.
Основные компоненты VCF 5.0 выглядят следующим образом:
Напомним, что VCF - это главное программное комплексное инфраструктурное решение VMware, которое включает в себя компоненты VMware vRealize Suite, VMware vSphere Integrated Containers, VMware Integrated OpenStack, VMware Horizon, NSX и другие, работающие в онпремизной, облачной или гибридной инфраструктуре предприятия под управлением SDDC Manager. О прошлой версии этой платформы 4.5 мы писали вот тут.
Релиз VMware Cloud Foundation 5.0 является результатом многих месяцев разработки и тестирования. В этот период испытывались последние версии vSphere 8.0 Update 1a для управления рабочей нагрузкой, vSAN 8.0 Update 1a для масштабируемого хранения, NSX 4.1 для сетевых решений и vRealize Lifecycle Manager 8.10 (Aria) для управления облаками.
Давайте посмотрим, что новой в обновленной архитектуре VCF 5:
1. Улучшения SDDC Manager
VMware Cloud Foundation 5.0 включает новую функцию под названием Isolated SSO Workload Domains, которая позволяет администраторам настроить новые области рабочей нагрузки, используя отдельный экземпляр Single Sign On (SSO). Этот сценарий полезен для крупных предприятий, которым необходима изоляция рабочих нагрузок, а также для сервис-провайдеров, которые могут выделять области рабочей нагрузки различным клиентам с их собственными доменами SSO. В каждом изолированном домене SSO настраивается собственный экземпляр NSX. Дополнительное преимущество заключается в том, что настройка областей рабочей нагрузки как изолированной области рабочей нагрузки также дает возможность настроить и отдельного поставщика идентификации (Active Directory или LDAP).
2. Масштабирование области рабочей нагрузки
Для Workload domain scaling число изолированных областей рабочей нагрузки увеличено с 15 до 25 в рамках одного экземпляра VMware Cloud Foundation. Обратите внимание, что области рабочей нагрузки, настроенные на использование общего домена управления SSO, по-прежнему ограничены максимумом 15 доменов. Дополнительное масштабирование становится возможным благодаря параллелизации задач с целью уменьшения времени на добавление областей рабочей нагрузки в экземпляр VMware Cloud Foundation.
3. Улучшения платформы и масштабирования VMware Cloud Foundation
Если посмотреть на новые возможности, представленные в VMware Cloud Foundation 5.0, улучшения платформы vSphere / vSAN и масштабирования, являются самыми ожидаемыми запросами функций от клиентов сред VMware Cloud Foundation. Также важно подчеркнуть, что обновления до VMware Cloud Foundation 5.0 являются прямыми, с возможностью пропуска обновлений версий VMware Cloud Foundation 4.3, 4.4 и 4.5.
Для обеспечения лучшего пользовательского опыта менеджер SDDC использует предварительные контекстные проверки (Pre-Checks), чтобы убедиться, что стек инфраструктуры готов принять желаемое обновление. Рабочие процессы, построенные в VMware Cloud Foundation 5.0, обеспечивают обновление развертывания до желаемой версии VMware Cloud Foundation в правильном порядке, начиная с компонентов домена управления.
В VMware Cloud Foundation 5.0 предварительные проверки менеджера SDDC были улучшены и теперь учитывают контекст. После того как менеджер SDDC был установлен или обновлен до версии 5.0, администраторы могут выбрать обновление своих доменов VMware Cloud Foundation до новой целевой версии VMware Cloud Foundation 5.x (при необходимости пропуская релизы), что дает администраторам возможность провести предварительную проверку для определенного релиза VMware Cloud Foundation или выполнить предварительную проверку "готовности к общему обновлению", чтобы обеспечить общую готовность платформы.
С VMware Cloud Foundation 5.0, менеджер SDDC также позволяет администраторам просматривать любые изменения в конфигурации, которые устанавливаются в рамках обновления, чтобы обеспечить дополнительную видимость и помочь администраторам лучше понять новые функции и возможности, а также влияние, которое они могут оказать на их текущие развертывания.
Более подробно о новых возможностях VMware Cloud Foundation 5.0
также можно почитать в следующих статьях:
Дункан Эппинг опубликовал интересную статью, касающуюся проблем, возникающих в растянутом кластере VMware vSAN при различных сценариях отказов в нем.
В некоторых из приведенных ниже сценариев Дункан обсуждает сценарии разделения кластера. Под разделением подразумевается ситуация, когда и L3-соединение с компонентом Witness, и ISL-соединение с другим сайтом недоступны для одного из сайтов. Так, на примере приведенной выше диаграммы, если говорится, что сайт B изолирован - это означает, что сайт A все еще может общаться со свидетелем, но сайт B не может общаться ни со свидетелем, ни с сайтом A.
Во всех следующих сценариях действуют следующие условия: сайт A является предпочтительным местоположением, а сайт B - второстепенным. Что касается таблицы ниже, то первые два столбца относятся к настройке политики для виртуальной машины, как показано на скриншоте:
Третий столбец относится к местоположению, откуда виртуальная машина работает с точки зрения вычислительных ресурсов (хоста ESXi). Четвертый описывает тип сбоя, а пятый и шестой столбцы детализируют наблюдаемое в этом случае поведение.
Site Disaster Tolerance
Failures to Tolerate
VM Location
Failure
vSAN behavior
HA behavior
None Preferred
No data redundancy
Site A or B
Host failure Site A
Objects are inaccessible if failed host contained one or more components of objects
VM cannot be restarted as object is inaccessible
None Preferred
RAID-1/5/6
Site A or B
Host failure Site A
Objects are accessible as there's site local resiliency
VM does not need to be restarted, unless VM was running on failed host
None Preferred
No data redundancy / RAID-1/5/6
Site A
Full failure Site A
Objects are inaccessible as full site failed
VM cannot be restarted in Site B, as all objects reside in Site A
None Preferred
No data redundancy / RAID-1/5/6
Site B
Full failure Site B
Objects are accessible, as only Site A contains objects
VM can be restarted in Site A, as that is where all objects reside
None Preferred
No data redundancy / RAID-1/5/6
Site A
Partition Site A
Objects are accessible as all objects reside in Site A
VM does not need to be restarted
None Preferred
No data redundancy / RAID-1/5/6
Site B
Partition Site B
Objects are accessible in Site A, objects are not accessible in Site B as network is down
VM is restarted in Site A, and killed by vSAN in Site B
None Secondary
No data redundancy / RAID-1/5/6
Site B
Partition Site B
Objects are accessible in Site B
VM resides in Site B, does not need to be restarted
None Preferred
No data redundancy / RAID-1/5/6
Site A
Witness Host Failure
No impact, witness host is not used as data is not replicated
No impact
None Secondary
No data redundancy / RAID-1/5/6
Site B
Witness Host Failure
No impact, witness host is not used as data is not replicated
No impact
Site Mirroring
No data redundancy
Site A or B
Host failure Site A or B
Components on failed hosts inaccessible, read and write IO across ISL as no redundancy locally, rebuild across ISL
VM does not need to be restarted, unless VM was running on failed host
Site Mirroring
RAID-1/5/6
Site A or B
Host failure Site A or B
Components on failed hosts inaccessible, read IO locally due to RAID, rebuild locally
VM does not need to be restarted, unless VM was running on failed host
Site Mirroring
No data redundancy / RAID-1/5/6
Site A
Full failure Site A
Objects are inaccessible in Site A as full site failed
VM restarted in Site B
Site Mirroring
No data redundancy / RAID-1/5/6
Site A
Partition Site A
Objects are inaccessible in Site A as full site is partitioned and quorum is lost
VM restarted in Site B
Site Mirroring
No data redundancy / RAID-1/5/6
Site A
Witness Host Failure
Witness object inaccessible, VM remains accessible
VM does not need to be restarted
Site Mirroring
No data redundancy / RAID-1/5/6
Site B
Full failure Site A
Objects are inaccessible in Site A as full site failed
VM does not need to be restarted as it resides in Site B
Site Mirroring
No data redundancy / RAID-1/5/6
Site B
Partition Site A
Objects are inaccessible in Site A as full site is partitioned and quorum is lost
VM does not need to be restarted as it resides in Site B
Site Mirroring
No data redundancy / RAID-1/5/6
Site B
Witness Host Failure
Witness object inaccessible, VM remains accessible
VM does not need to be restarted
Site Mirroring
No data redundancy / RAID-1/5/6
Site A
Network failure between Site A and B (ISL down)
Site A binds with witness, objects in Site B becomes inaccessible
VM does not need to be restarted
Site Mirroring
No data redundancy / RAID-1/5/6
Site B
Network failure between Site A and B (ISL down)
Site A binds with witness, objects in Site B becomes inaccessible
VM restarted in Site A
Site Mirroring
No data redundancy / RAID-1/5/6
Site A or Site B
Network failure between Witness and Site A/B
Witness object inaccessible, VM remains accessible
VM does not need to be restarted
Site Mirroring
No data redundancy / RAID-1/5/6
Site A
Full failure Site A, and simultaneous Witness Host Failure
Objects are inaccessible in Site A and Site B due to quorum being lost
VM cannot be restarted
Site Mirroring
No data redundancy / RAID-1/5/6
Site A
Full failure Site A, followed by Witness Host Failure a few minutes later
Pre vSAN 7.0 U3: Objects are inaccessible in Site A and Site B due to quorum being lost
VM cannot be restarted
Site Mirroring
No data redundancy / RAID-1/5/6
Site A
Full failure Site A, followed by Witness Host Failure a few minutes later
Post vSAN 7.0 U3: Objects are inaccessible in Site A, but accessible in Site B as votes have been recounted
VM restarted in Site B
Site Mirroring
No data redundancy / RAID-1/5/6
Site B
Full failure Site B, followed by Witness Host Failure a few minutes later
Post vSAN 7.0 U3: Objects are inaccessible in Site B, but accessible in Site A as votes have been recounted
VM restarted in Site A
Site Mirroring
No data redundancy
Site A
Full failure Site A, and simultaneous host failure in Site B
Objects are inaccessible in Site A, if components reside on failed host then object is inaccessible in Site B
VM cannot be restarted
Site Mirroring
No data redundancy
Site A
Full failure Site A, and simultaneous host failure in Site B
Objects are inaccessible in Site A, if components do not reside on failed host then object is accessible in Site B
VM restarted in Site B
Site Mirroring
RAID-1/5/6
Site A
Full failure Site A, and simultaneous host failure in Site B
Objects are inaccessible in Site A, accessible in Site B as there's site local resiliency
VM restarted in Site B
Таги: VMware, vSAN, Troubleshooting, HA, DR, Blogs
На сайте проекта VMware Labs вышло очередное обновление утилиты vSAN Objects Viewer 1.5.7, которая позволяет выводить информацию о различных компонентах vSAN в целях анализа конфигураций и хранилищ.
При устранении проблем с vSAN, анализ вывода команды cmmds-tools и локальных команд является важным для получения полного представления о среде vSAN. Такая информация включает информацию о кластере vSAN, узлах, группах дисков и объектах. Однако ручной процесс анализа может быть затратным по времени. Чтобы сэкономить время и усилия, VMware разработала инструмент, который быстро преобразует информацию о vSAN из текста в графику, включая:
Топологию кластера vSAN
Информацию об узлах vSAN
Информацию о группах дисков vSAN
Состав ВМ и объектов
Распределение и статус компонентов
По сравнению с существующими анализаторами, данный инструмент выводит больше деталей о vSAN DOM и LSOM, таких как тип и распределение статусов, выходя за рамки информации об аппаратном обеспечении и углубляясь в объекты DOM. vSAN Objects Viewer имеет три основные функции:
Отображение информации о состоянии здоровья кластера vSAN
Показ информации о ВМ и объектах
Визуализация распределения объектов
Скачать vSAN Objects Viewer 1.5.7 можно по этой ссылке.
На прошлой неделе мы рассказали о новых возможностях обновленной версии платформы VMware vSphere 8 Update 1, а также новых функциях инфраструктуры хранилищ (Core Storage). Сегодня мы поговорим о новой версии vSAN 8 Update 1 - решения для организации отказоустойчивых кластеров хранилищ для виртуальных машин.
В vSAN 8 компания VMware представила архитектуру хранилища vSAN Express Storage Architecture (ESA), сделав весомый вклад в развитие гиперконвергентной инфраструктуры. В первом пакете обновлений vSAN компания VMware продолжает развивать этот продукт, позволяя клиентам использовать современные массивы, которые обеспечивают новый уровень производительности, масштабируемости, надежности и простоты использования.
Обзор основных возможностей vSAN 8 Update 1 вы также можете увидеть в видео ниже (откроется в новом окне):
В vSAN 8 Update 1 продолжают разрабатывать и улучшать обе архитектуры - vSAN OSA и vSAN ESA. Давайте посмотрим, что нового появилось в vSAN U1:
1. Масштабирование распределенных хранилищ
Обработка разделенных ресурсов вычисления и хранения в кластерах улучшена в версии vSAN 8 U1. Клиенты могут масштабироваться новыми способами, совместно используя хранилища данных vSAN с другими кластерами vSAN или только с вычислительными кластерами vSphere в рамках подхода HCI Mesh.
Управление распределенными хранилищами HCI Mesh с помощью архитектуры Express Storage
В vSAN 8 U1 архитектура Express Storage Architecture (ESA) позволяет клиентам максимизировать использование ресурсов устройств нового поколения путем предоставления общего доступа к хранилищами в нескольких нерастянутых кластерах для подхода HCI Mesh. Пользователи могут монтировать удаленные хранилища данных vSAN, расположенные в других кластерах vSAN, и использовать кластер vSAN ESA в качестве внешнего хранилища ресурсов для кластера vSphere.
Использование внешнего хранилища с помощью растянутых кластеров vSAN для OSA
В vSAN 8 U1 появилась поддержка распределенных хранилищ HCI Mesh при использовании растянутых кластеров vSAN на основе архитектуры хранения vSAN OSA. Теперь пользователи могут масштабировать хранение и вычислительные мощности независимо - в стандартных и растянутых кластерах.
Потребление емкостей хранилищ vSAN для разных экземпляров vCenter Server
vSAN 8 U1 также поддерживает распределенные хранилища в разных средах с использованием нескольких серверов vCenter при использовании традиционной архитектуры хранения (OSA).
2. Улучшение платформы
Улучшенная производительность с использованием нового адаптивного пути записи
В новом релизе представлен новый адаптивный путь записи, который позволяет рабочим нагрузкам с множеством записей и частопоследовательными записями записывать данные оптимальным способом. Улучшенная потоковая запись на ESA обеспечит увеличение пропускной способности на 25% и снижение задержки для последовательных записей. Это обновление не только повлияет на приложения с преобладающим профилем последовательной записи I/O, но и расширит разнообразие нагрузок, которые работают оптимальным образом на ESA vSAN.
Улучшенная производительность для отдельных нагрузок
Чтобы извлечь максимальную пользу из современного оборудования NVMe, в vSAN ESA 8 U1 была оптимизирована обработка I/O для каждого объекта, находящегося на хранилище данных vSAN ESA, повысив производительность на каждый VMDK на 25%. Эти улучшения производительности для отдельных объектов на ESA будут очень эффективны на критически важных виртуальных машинах, включая приложения, такие как реляционные базы данных и нагрузки OLTP.
Улучшенная надежность во время сценариев режима обслуживания.
В vSAN 8 U1 для ESA была добавлена еще одна функция, которая присутствует в vSAN OSA: поддержка RAID 5 и RAID 6 erasure coding с функциями дополнительной защиты от потери данных во время плановых операций обслуживания. Эта новая возможность гарантирует, что данные на ESA хранятся с избыточностью в случае неожиданного сбоя хоста в кластере во время режима обслуживания.
Улучшения управления датасторами
В vSAN 8 U1 администраторы смогут настраивать размер объектов пространства имен, что позволит им более просто хранить файлы ISO и библиотеки контента.
3. Упрощение управления
При использовании управления хранилищем на основе политик (SPBM), клиенты могут определять возможности хранения с помощью политик и применять их на уровне виртуальных машин. vSAN 8 U1 есть несколько новых улучшений, которые упрощают ежедневные операции администраторов, а также добавляют несколько новых возможностей, чтобы помочь глобальной команде поддержки VMware (GS) быстрее решать проблемы клиентов.
Автоматическое управление политиками для Default Storage Policies
(ESA)
В vSAN ESA 8 U1 появилась новая, необязательная кластерная политика хранения по умолчанию, которая поможет администраторам работать с кластерами ESA с оптимальной надежностью и эффективностью. В конфигурации на уровне кластера доступен новый переключатель "Auto-Policy Management". При включении этой функции кластера будет создана и назначена эффективная политика хранения по умолчанию на основе размера и типа кластера.
Skyline Health Score и исправление конфигурации
В vSAN 8 U1 модуль Skyline UX был переработан и теперь содержит новую панель управления состоянием с упрощенным видом "здоровья" каждого кластера. Новый пользовательский интерфейс поможет ответить на вопросы: "Находится ли мой кластер и обрабатываемые им нагрузки в работоспособном и здоровом состоянии?" и "Насколько серьезно это состояние? Следует ли решить эту проблему?".
С таким четким пониманием потенциальных проблем и действий для их устранения вы можете сократить среднее время до устранения проблем (mean time to resolution, MTTR).
Более высокий уровень детализации для улучшенного анализа производительности
Доступный как в Express Storage Architecture, так и в Original Storage Architecture, сервис производительности vSAN 8 U1 теперь включает мониторинг производительности почти в реальном времени, который собирает и отображает показатели производительности каждые 30 секунд.
Упрощенный сбор диагностической информации о производительности
В vSAN 8 U1 в I/O Trip Analyzer для виртуальных машин появился новый механизм планировщика. Вы можете запускать диагностику программно, что позволяет собирать больше и лучших данных, что может быть критически важно для выявления временных проблем производительности. Это улучшение идеально подходит для сред, где ВМ имеет повторяющуюся (хоть и кратковременную) проблему с производительностью.
Новая интеграция PowerCLI
В vSAN 8 U1 PowerCLI поддерживает множество новых возможностей как для архитектур ESA (Express Storage Architecture), так и OSA (Original Storage Architecture). С помощью этих интеграций клиенты ESA получат простой доступ к своему инвентарю для мониторинга и автоматизации управления своей средой и выделением ресурсов.
4. Функции Cloud Native Storage
Выделенные окружения DevOps увеличивают сложность всего центра обработки данных и увеличивают затраты. Используя существующую среду vSphere для хостинга рабочих нагрузок Kubernetes DevOps, клиенты дополнительно увеличивают ценность и ROI платформы VMware. VMware продолжает фокусироваться на потребностях разработчиков: в vSAN 8 U1 были реализованы новые улучшения производительности, простоты и гибкости для разработчиков, которые используют среду, и для администраторов, ответственных за саму платформу.
Поддержка CNS для vSAN ESA
В vSAN 8 U1 мы добавили поддержку Cloud Native Storage (CNS) для vSAN ESA. Клиенты могут получить преимущества производительности vSAN ESA для своих сред DevOps.
Поддержка DPp общих виртуальных коммутаторов
vSAN 8 U1 снижает стоимость и сложность инфраструктуры за счет того, что решения DPp (Data Persistence) теперь совместимы с VMware vSphere Distributed Switch. Клиентам нужны только лицензии vSphere+/vSAN+, чтобы использовать платформу Data Persistence — на vSAN OSA или ESA — и запускать приложения, что дает более низкую общую стоимость владения и упрощение операций.
Развертывние Thick provisioning для vSAN Direct Configuration
Наконец, в vSAN 8 U1 были доработаны кластеры, работающие в конфигурации vSAN Direct Configuration — это уникальная кластерная конфигурация, настроенная под Cloud Native Workloads. С vSAN 8 U1 постоянные тома могут быть программно выделены разработчиком как "thick" (это определяется в классе хранения).
Более подробно о новых возможностях VMware vSAN 8 Update 1 можно почитать на специальной странице.
Таги: VMware, vSAN, Update, Storage, OSA, ESA, Performance
Недавно мы писали об анонсированных новых возможностях обновленной платформы виртуализации VMware vSphere 8 Update 1, выход которой ожидается в ближайшее время. Параллельно с этим компания VMware объявила и о выпуске новой версии решения VMware vSAN 8 Update 1, предназначенного для создания высокопроизводительных отказоустойчивых хранилищ для виртуальных машин, а также об улучшениях подсистемы хранения Core Storage в обеих платформах.
Недавно компания VMware также выпустила большую техническую статью "What's New with vSphere 8 Core Storage", в которой детально рассмотрены все основные новые функции хранилищ, с которыми работают платформы vSphere и vSAN. Мы решили перевести ее с помощью ChatGPT и дальше немного поправить вручную. Давайте посмотрим, что из этого вышло :)
Итак что нового в части Core Storage платформы vSphere 8 Update 1
Одно из главных улучшений - это новая система управления сертификатами. Она упрощает возможность регистрации нескольких vCenter в одном VASA-провайдере. Это положит основу для некоторых будущих возможностей, таких как vVols vMSC. Такж есть и функции, которые касаются масштабируемости и производительности. Поскольку vVols могут масштабироваться гораздо лучше, чем традиционное хранилище, VMware улучшила подсистему хранения, чтобы тома vVols работали на больших масштабах.
1. Развертывание нескольких vCenter для VASA-провайдера без использования самоподписанных сертификатов
Новая спецификация VASA 5 была разработана для улучшения управления сертификатами vVols, что позволяет использовать самоподписанные сертификаты для многовендорных развертываний vCenter. Это решение также решает проблему управления сертификатами в случае, когда независимые развертывания vCenter, работающие с различными механизмами управления сертификатами, работают вместе. Например, один vCenter может использовать сторонний CA, а другой vCenter может использовать сертификат, подписанный VMCA. Такой тип развертывания может быть использован для общего развертывания VASA-провайдера. Эта новая возможность использует механизм Server Name Indication (SNI).
SNI - это расширение протокола Transport Layer Security (TLS), с помощью которого клиент указывает, какое имя хоста он пытается использовать в начале процесса handshake. Это позволяет серверу показывать несколько сертификатов на одном IP-адресе и TCP-порту. Следовательно, это позволяет обслуживать несколько безопасных (HTTPS) веб-сайтов (или других служб через TLS) с одним и тем же IP-адресом, не требуя, чтобы все эти сайты использовали один и тот же сертификат. Это является концептуальным эквивалентом виртуального хостинга на основе имени HTTP/1.1, но только для HTTPS. Также теперь прокси может перенаправлять трафик клиентов на правильный сервер во время хэндшейка TLS/SSL.
2. Новая спецификация vVols VASA 5.0 и некоторые детали функций
Некоторые новые функции, добавленные в vSphere 8 U1:
Изоляция контейнеров - работает по-разному для поставщиков VASA от различных производителей. Она позволяет выполнять настройку политики контроля доступа на уровне каждого vCenter, а также дает возможность перемещения контейнеров между выбранными vCenter. Это дает лучшую изоляцию на уровне контейнеров, а VASA Provider может управлять правами доступа для контейнера на уровне каждого vCenter.
Аптайм - поддержка оповещений об изменении сертификата в рамках рабочего процесса VASA 5.0, который позволяет обновлять сертификат VMCA в системах с несколькими vCenter. Недействительный или истекший сертификат вызывает простой, также возможно возникновение простоя при попытке регистрации нескольких vCenter с одним VASA Provider. В конфигурации с несколькими vCenter сертификаты теперь можно обновлять без простоя.
Улучшенная безопасность для общих сред - эта функция работает по-разному для поставщиков VASA от производителей. Все операции могут быть аутентифицированы в контексте vCenter, и каждый vCenter имеет свой список контроля доступа (ACL). Теперь нет самоподписанных сертификатов в доверенном хранилище. VASA Provider может использоваться в облачной среде, и для этого также есть доступная роль в VASA 5.0.
Обратная совместимость - сервер ESXi, который поддерживает VASA 5.0, может решать проблемы с самоподписанными сертификатами и простоями, возникающими в случае проблем. VASA 5.0 остается обратно совместимым и дает возможность контролировать обновление в соответствии с требованиями безопасности. VASA 5.0 может сосуществовать с более ранними версиями, если производитель поддерживает эту опцию.
Гетерогенная конфигурация сертификатов - работает по-разному для поставщиков VASA от производителей. Теперь используется только подписанный сертификат VMCA, дополнительный CA не требуется. Это позволяет изолировать доверенный домен vSphere. VASA 5.0 позволяет использовать разные конфигурации для каждого vCenter (например, Self-Managed 3rd Party CA Signed Certificate и VMCA managed Certificate).
Не необходимости вмешательства администратора - поддержка многократного развертывания vCenter с использованием VMCA, которая не требует от пользователя установки и управления сертификатами для VP. Служба SMS будет отвечать за предоставление сертификатов. Теперь это работает в режиме Plug and Play с автоматической предоставлением сертификатов, без вмешательства пользователя, при этом не требуется никаких ручных действий для использования VASA Provider с любым vCenter.
Комплаенс безопасности - отсутствие самоподписанных сертификатов в доверенных корневых центрах сертификации позволяет решить проблемы соответствия требованиям безопасности. Не-СА сертификаты больше не являются частью хранилища доверенных сертификатов vSphere. VASA 5.0 требует от VASA Provider использовать сертификат, подписанный СА для связи с VASA.
3. Перенос Sidecar vVols в config-vvol вместо другого объекта vVol
Sidecars vVols работали как объекты vVol, что приводило к накладным расходам на операции VASA, такие как bind/unbind. Решения, такие как First Class Disks (FCD), создают большое количество маленьких sidecars, что может ухудшить производительность vVols. Кроме того, поскольку может быть создано множество sidecars, это может учитываться в общем количестве объектов vVol, поддерживаемых на массиве хранения. Чтобы улучшить производительность и масштабируемость, теперь они обрабатываются как файлы на томе config-vvol, где могут выполняться обычные операции с файлами. Не забывайте, что в vSphere 8 был обновлен способ байндига config-vvol. В результате, с новым механизмом config-vvol уменьшается число операций и задержки, что улучшает производительность и масштабируемость.
Для этой функциональности в этом релизе есть несколько ограничений при создании ВМ. Старые виртуальные машины могут работать в новом формате на обновленных до U1 хостах, но сам новый формат не будет работать на старых ESXi. То есть новые созданные ВМ и виртуальные диски не будут поддерживаться на хостах ниже версии ESXi 8 U1.
5. Улучшения Config-vvol, поддержка VMFS6 config-vvol с SCSI vVols (вместо VMFS5)
Ранее Config-vvol, который выступает в качестве каталога для хранилища данных vVols и содержимого VM home, был ограничен размером 4 ГБ. Это не давало возможности использования папок с хранилищем данных vVols в качестве репозиториев ВМ и других объектов. Для преодоления этого ограничения Config-vvol теперь создается как тонкий объект объемом 255 ГБ. Кроме того, вместо VMFS-5 для этих объектов будет использоваться формат VMFS-6. Это позволит размещать файлы sidecar, другие файлы VM и библиотеки контента в Config-vvol.
На изображении ниже показаны Config-vvol разных размеров. Для машины Win10-5 Config-vvol использует исходный формат 4 ГБ, а ВМ Win10-vVol-8u1 использует новый формат Config-vvol объемом 255 ГБ.
6. Добавлена поддержка NVMe-TCP для vVols
В vSphere 8 была добавлена поддержка NVMe-FC для vVols. В vSphere 8 U1 также расширена поддержка NVMe-TCP, что обеспечивает совместное использование NVMeoF и vVols. См. статью vVols with NVMe - A Perfect Match | VMware.
7. Улучшения NVMeoF, PSA, HPP
Инфраструктура поддержки NVMe end-to-end:
Расширение возможностей NVMe дает возможность поддержки полного стека NVMe без какой-либо трансляции команд SCSI в NVMe на любом уровне ESXi. Еще одной важной задачей при поддержке end-to-end NVMe является возможность контроля multipath-плагинов сторонних производителей для управления массивами NVMe.
Теперь с поддержкой GOS протокол NVMe может использоваться для всего пути - от GOS до конечного таргета.
Важным аспектом реализации VMware трансляции хранилищ виртуальных машин является поддержка полной обратной совместимости. VMware реализовала такой механизм, что при любом сочетании виртуальных машин, использующих SCSI или контроллер vNVMe, и целевого устройства, являющегося SCSI или NVMe, можно транслировать путь в стеке хранения. Это дизайн, который позволяет клиентам переходить между SCSI- и NVMe-хранилищами без необходимости изменения контроллера хранилищ для виртуальной машины. Аналогично, если виртуальная машина имеет контроллер SCSI или vNVMe, он будет работать как на SCSI-, так и на NVMeoF-хранилищах.
Упрощенная диаграмма стека хранения выглядит так:
Для получения дополнительной информации о NVMeoF для vSphere, обратитесь к странице ресурсов NVMeoF.
8. Увеличение максимального количества путей для пространств имен NVMe-oF с 8 до 32
Увеличение количества путей улучшает масштабирование в окружениях с несколькими путями к пространствам имен NVMe. Это необходимо в случаях, когда хосты имеют несколько портов и модуль имеет несколько нод, а также несколько портов на одной ноде.
9. Увеличение максимального количества кластеров WSFC на один хост ESXi с 3 до 16
Это позволяет уменьшить количество лицензий Microsoft WSFC, необходимых для увеличения количества кластеров, которые могут работать на одном хосте.
Для получения дополнительной информации о работе Microsoft WSFC на vSphere можно обратиться к следующим ресурсам:
10. Улучшения VMFS - расширенная поддержка XCOPY для копирования содержимого датасторов между различными массивами
ESXi теперь поддерживает расширенные функции XCOPY, что оптимизирует копирование данных между датасторами разных массивов. Это поможет клиентам передать обработку рабочих нагрузок на сторону хранилища. Функция уже доступна в vSphere 8 U1, но по факту миграция данных между массивами должна поддерживаться на стороне хранилища.
11. Реализация NFSv3 vmkPortBinding
Данная функция позволяет привязать соединение NFS для тома к конкретному vmkernel. Это помогает обеспечить безопасность, направляя трафик NFS по выделенной подсети/VLAN, и гарантирует, что трафик NFS не будет использовать mgmt-интерфейс или другие интерфейсы vmkernel.
Предыдущие монтирования NFS не содержат этих значений, хранящихся в config store. Во время обновления, при чтении конфигурации из конфигурационного хранилища, значения vmknic и bindTovmnic, если они есть, будут считаны. Поэтому обновления с предыдущих версий не будут содержать этих значений, так как они являются необязательными.
Изменения в способе создания/удаления Swap-файлов для томов vVols помогли улучшить производительность включения/выключения, а также производительность vMotion и svMotion.
13. Улучшения Config vVol и сохранение привязки
Здесь были сделаны следующие доработки:
Уменьшено время запроса при получении информации о ВМ
Добавлено кэширование атрибутов vVol - размер, имя и прочих
Конфигурационный vVol - это место, где хранятся домашние файлы виртуальной машины (vmx, nvram, logs и т. д.) и к нему обычно обращаются только при загрузке или изменении настроек виртуальной машины.
Ранее использовалась так называемая "ленивая отмена связи" (lazy unbind), и происходил unbind конфигурационного vVol, когда он не использовался. В некоторых случаях приложения все же периодически обращались к конфигурационному vVol, что требовало новой операции привязки. Теперь эта связь сохраняется, что уменьшает задержку при доступе к домашним данным виртуальной машины.
14. Поддержка NVMeoF для vVols
vVols были основным направлением развития функциональности хранилищ VMware в последние несколько версий, и для vSphere 8.0 это не исключение. Самое большое обновление в ядре хранения vSphere 8.0 - добавление поддержки vVols в NVMeoF. Изначально поддерживается только FC, но со временем будут работать и другие протоколы, провалидированные и поддерживаемые с помощью vSphere NVMeoF. Теперь есть новая спецификация vVols и VASA/VC-фреймворка - VASA 4.0/vVols 3.0.
Причина добавления поддержки vVols в NVMeoF в том, что многие производители массивов, а также отрасль в целом, переходят на использование или, по крайней мере, добавление поддержки NVMeoF для повышения производительности и пропускной способности. Вследствие этого VMware гарантирует, что технология vVols остается поддерживаемой для последних моделей хранилищ.
Еще одним преимуществом NVMeoF vVols является настройка. При развертывании после регистрации VASA фоновая установка завершается автоматически, вам нужно только создать датастор. Виртуальные эндпоинты (vPE) и соединения управляются со стороны VASA, что упрощает настройку.
Некоторые технические детали этой реализации:
ANA Group (Асимметричный доступ к пространству имен)
С NVMeoF реализация vVols немного отличается. С традиционными SCSI vVols хранилищами контейнер является логической группировкой самих объектов vVol. С NVMeoF это варьируется в зависимости от того, как поставщик массива реализует функциональность. В общем и целом, на хранилище группа ANA является группировкой пространств имен vVol. Массив определяет количество групп ANA, каждая из которых имеет уникальный ANAGRPID в подсистеме NVM. Пространства имен выделяются и активны только по запросу BIND к провайдеру VASA (VP). Пространства имен также добавляются в группу ANA при запросе BIND к VP. Пространство имен остается выделенным/активным до тех пор, пока последний хост не отвяжет vVol.
vPE (virtual Protocol Endpoint)
Для традиционных vVols на базе SCSI, protocol endpoint (PE) - это физический LUN или том на массиве, который отображается в появляется в разделе устройств хранения на хостах. С NVMeoF больше нет физического PE, PE теперь является логическим объектом, представлением группы ANA, в которой находятся vVols. Фактически, до тех пор, пока ВМ не запущена, vPE не существует. Массив определяет количество групп ANA, каждая из которых имеет уникальный ANAGRPID в подсистеме NVM. Как только ВМ запущена, создается vPE, чтобы хост мог получить доступ к vVols в группе ANA. На диаграмме ниже вы можете увидеть, что vPE указывает на группу ANA на массиве.
NS (пространство имен, эквивалент LUN в NVMe)
Каждый тип vVol (Config, Swap, Data, Mem), созданный и использующийся машиной, создает NS, который находится в группе ANA. Это соотношение 1:1 между vVol и NS позволяет вендорам оборудования легко масштабировать объекты vVols. Обычно поставщики поддерживают тысячи, а иногда и сотни тысяч NS. Ограничения NS будут зависеть от модели массива.
На диаграмме вы можете увидеть, что сама виртуальная машина является NS, это будет Config vVol, а диск - это другой NS, Data vVol.
Поддержка 256 пространств имен и 2K путей с NVMe-TCP и NVMe-FC
NVMeoF продолжает набирать популярность по очевидным причинам - более высокая производительность и пропускная способность по сравнению с традиционным подключением SCSI или NFS. Многие производители хранилищ также переходят на NVMe-массивы и использование SCSI для доступа к NVMe флэш-накопителям является узким местом и потенциалом для улучшений.
Продолжая работать на этим, VMware увеличила поддерживаемое количество пространств имен и путей как для NVMe-FC, так и для TCP.
Расширение reservations для устройств NVMe
Добавлена поддержка команд reservations NVMe для использования таких решений, как WSFC. Это позволит клиентам использовать возможности кластеризованных дисков VMDK средствами Microsoft WSFC с хранилищами данных NVMeoF. Пока поддерживается только протокол FC.
Поддержка автообнаружения для NVMe Discovery Service на ESXi
Расширенная поддержка NVMe-oF в ESXi позволяет динамически обнаруживать совместимые со стандартом службы NVMe Discovery Service. ESXi использует службу mDNS/DNS-SD для получения информации, такой как IP-адрес и номер порта активных служб обнаружения NVMe-oF в сети.
Также ESXi отправляет многоадресный DNS-запрос (mDNS), запрашивая информацию от сущностей, предоставляющих службу обнаружения DNS-SD. Если такая сущность активна в сети (на которую был отправлен запрос), она отправит (одноадресный) ответ на хост с запрошенной информацией - IP-адрес и номер порта, где работает служба.
16. Улучшение очистки дискового пространства с помощью Unmap
Снижение минимальной скорости очистки до 10 МБ/с
Начиная с vSphere 6.7, была добавлена функция настройки скорости очистки (Unmap) на уровне хранилища данных. С помощью этого улучшения клиенты могут изменять скорость очистки на базе рекомендаций поставщика их массива. Более высокая скорость очистки позволяла многим пользователям быстро вернуть неиспользуемое дисковое пространство. Однако иногда даже при минимальной скорости очистки в 25 МБ/с она может быть слишком высокой и привести к проблемам при одновременной отправке команд Unmap несколькими хостами. Эти проблемы могут усугубляться при увеличении числа хостов на один датастор.
Пример возможной перегрузки: 25 МБ/с * 100 хранилищ данных * 40 хостов ~ 104 ГБ/с
Чтобы помочь клиентам в ситуациях, когда скорость очистки 25 МБ/с может приводить к проблемам, VMware снизила минимальную скорость до 10 МБ/с и сделала ее настраиваемой на уровне датасторов:
При необходимости вы также можете полностью отключить рекламацию пространства для заданного datastore.
Очередь планирования отдельных команд Unmap
Отдельная очередь планирования команд Unmap позволяет выделить высокоприоритетные операции ввода-вывода метаданных VMFS и обслуживать их из отдельных очередей планирования, чтобы избежать задержки их исполнения из-за других команд Unmap.
17. Контейнерное хранилище CNS/CSI
Теперь вы можете выбрать политику Thin provisioning (EZT, LZT) через SPBM для CNS/Tanzu.
Цель этого - добавить возможность политик SPBM для механизма создания/изменения правил политик хранения, которые используются для параметров выделения томов. Это также облегчает проверку соответствия правил выделения томов в политиках хранения для SPBM.
Операции, поддерживаемые для виртуальных дисков: создание, реконфигурация, клонирование и перемещение.
Операции, поддерживаемые для FCD: создание, обновление политики хранения, клонирование и перемещение.
18. Улучшения NFS
Инженеры VMware всегда работают над улучшением надежности доступа к хранилищам. В vSphere 8 были добавлены следующие улучшения NFS, повышающие надежность:
Повторные попытки монтирования NFS при сбое
Валидация монтирования NFS
Ну как вам работа ChatGPT с правками человека? Читабельно? Напишите в комментариях!
Как знают многие администраторы, у VMware есть список сертифицированных конфигураций оборудования, подходящих под использование продуктов линейки vSAN (а также различных профилей нагрузки, например, VDI), который называется Ready Node.
Также, как вы помните, с релизом новой версии решения для создания отказоустойчивых кластеров хранилищ vSAN 8 компания VMware выпустила и новую архитектуру Express Storage Architecture (ESA). Это архитектура гиперконвергентной инфраструктуры, которая позволяет достичь максимальных показателей производительности и эффективности на базе высокопроизводительных систем хранения.
За счет использования флэш-памяти TLC на основе технологии NVMe, архитектура ESA имеет множество преимуществ по сравнению со стандартной vSAN Original Storage Architecture (OSA), которая также продолжает поддерживаться для стандартного на текущий момент оборудования (устройства SATA/SAS).
С релизом ESA многие администраторы задались вопросом, на каких серверах можно развертывать сервисы этой архитектуры vSAN. С самого начала в списке Ready Node поддерживалось оборудование Dell, HPe и Lenovo, а недавно добавили и серверы Supermicro.
Основная модификация, которая, как правило, интересует пользователей - это "Storage Device" и "Number of Storage Devices", то есть возможность заменять тип накопителей и их количество. Но это не все - в зависимости от типов узлов вы можете менять CPU и память (только в сторону увеличения ресурсов), а также сетевые карты и их количество.
Полный список доступны изменений приведен в KB 90343, но их суть сводится к таблице, представленной ниже (кликните для увеличения):
В той же статье вы найдете и ответы на самые часто возникающие вопросы об узлах Ready Node для Express Storage Architecture.
Дункан Эппинг обратил внимание на два важных аспекта архитектуры VMware HCI Mesh, которая появилась в версии платформы VMware vSphere 7 Update 1. С помощью нее можно монтировать датасторы удаленного кластера vSAN (который выступает в роли "сервера" для кластеров-клиентов):
В такой схеме можно использовать несколько кластеров-клиентов для монтирования датастора, но надо соблюдать правило доступа: не более 64 хостов ESXi к одному датастору, включая хосты серверного кластера.
В такой конфигурации можно делать vMotion виртуальных машин между кластерами vSAN, но хранилище (Storage vMotion) при этом перемещать нельзя.
Дункан справедливо отмечает - здесь можно использовать подход Full Mesh, когда один и тот же кластер выступает и клиентом, и сервером. То есть датасторы кластеров vSAN могут находиться в общем пространстве хранения для распределенных датацентров. Надо отметить, что многие пользователи применяют такой подход как альтернативу растянутым кластерам vSAN (stretched clusters):
Надо помнить, что при этом есть ограничение: каждый серверный кластер может экспортировать не более 5 датасторов для клиентских кластеров, а каждый клиентский - монтировать не более 5 датасторов серверных кластеров.
Второй важный момент: это архитектура ESA (Express Storage Architecture), появившаяся в VMware vSAN 8. Это новая архитектура гиперконвергентной инфраструктуры, которая позволяет достичь максимальных показателей производительности и эффективности на базе высокопроизводительных систем хранения.
Так вот, архитектура ESA не поддерживается для механизма HCI Mesh (по крайней мере, пока). Поэтому использовать таким образом организованные распределенные кластеры пока не получится.
В общем, мораль здесь в том, что перед обсуждением решения об имплементации той или иной архитектуры нужно почитать о ее ограничениях.
Мы много писали о новой версии решения для организации кластеров отказоустойчивых хранилищ VMware vSAN 8.0, в последней версии которого появилось много всего нового, в частности архитектура ESA (Express Storage Architecture). Это новая архитектура гиперконвергентной инфраструктуры, позволяющая достичь максимальных показателей производительности и эффективности на базе высокопроизводительных систем хранения.
За счет использования флэш-памяти TLC на основе технологии NVMe, архитектура ESA имеет множество преимуществ по сравнению со стандартной vSAN Original Storage Architecture (OSA), которая также продолжает поддерживаться для стандартного на текущий момент оборудования (устройства SATA/SAS).
Дункан Эппинг недавно рассказал о том, как в архитектуре ESA работает механизм адаптивного RAID-5. Он позволяет развернуть определенную конфигурацию RAID-5, в зависимости от того, сколько хостов ESXi находится в кластере vSAN. Базовое правило тут такое:
RAID-5, конфигурация 2+1 - выставляется при 3-5 хостах в кластере
RAID-5, конфигурация 4+1, выставляется при 6 и более хостах
При схеме 2+1 вы получите 50% надбавку к сырой емкости, то есть чтобы хранить 100 ГБ данных вам потребуется 150 ГБ хранилища.
Для конфигурации 4+1 (при 6 хостах и более) вы получаете меньшую потерю емкости - всего 25%, то есть для хранения данных в объеме 100 ГБ на Capacity leg вам потребуется всего 125 ГБ емкости.
Интересная особенность Adaptive RAID-5 в том, что он постоянно следит за размером кластера в реальном времени. То есть, если у вас есть 6 хостов, а один из них падает или переходит в режим обслуживания, то vSAN автоматически переключает конфигурацию с 4+1 на 2+1 по истечении 24 часов (а потом и обратно при восстановлении исходной конфигурации).
Функциональность адаптивного RAID-5 работает и в растянутом (stretched) кластере. То есть, если у вас растянутый кластер в схеме 3+3+1, то вы увидите в нем конфигурацию RAID-5 в схеме 2+1, а если у вас кластер 6+6+1 (или более), то конфигурация будет 4+1. Если вы поместите несколько хостов в режим обслуживания, то конфигурация также изменится с 4+1 на 2+1, а потом изменится обратно на 4+1, когда хосты ESXi снова будут введены в строй.
В этом году компания VMware в рамках анонсов конференции Explore 2022 выпустила новые версии платформ vSphere 8 и vSAN 8. Главным нововведением новой версии vSAN стало решение Express Storage Architecture. Это новая архитектура гиперконвергентной инфраструктуры, которая позволяет достичь максимальных показателей производительности и эффективности на базе высокопроизводительных систем хранения.
За счет использования флэш-памяти TLC на основе технологии NVMe, архитектура ESA имеет множество преимуществ по сравнению со стандартной vSAN Original Storage Architecture (OSA), которая также продолжает поддерживаться для стандартного на текущий момент оборудования (устройства SATA/SAS).
Традиционно, в vSAN одним из фундаментальных понятий были дисковые группы. Это объединения дисков на хостах ESXi, которые используются для функций хранения (Capacity tier) и кэширования (Caching tier). Необходимо было это для того, чтобы пользователи могли гибко управлять ресурсами HDD и SSD дисков с точки зрения емкостей (дешевле использовать HDD) и производительности кэша (лучше использовать SSD).
Так как архитектура ESA предназначена для высокопроизводительных хранилищ на SSD/NVMe носителях, то необходимость использования дисковых групп отпала - вместо них появился объект Storage Pool. Теперь пользователю не нужно указывать, какие диски будут использоваться для кэширования, а какие для хранения - все они вносят вклад, как в подсистему хранения, так и в подсистему кэширования на паритетной основе (операции ввода-вывода распределяются между устройствами равномерно, не создавая бутылочного горла).
Идея vSAN в том, чтобы обеспечивать скорость чтения на уровне RAID-1, а эффективность использования дискового пространства на уровне RAID-5 / RAID-6. Подсистема работы с хранилищами оптимизирована таким образом, что сейчас поддерживается память TLC, но и сделаны оптимизации для будущих устройств QLC. Об этом рассказал Дункан Эппинг.
Ключевые элементы новой архитектуры - это файловая система log-structured filesystem и специальный durable log. Давайте посмотрим на картинку:
Все данные, которые отправляются на запись в log-structured file system, сначала попадают в durable log. Это позволяет убедиться в том, что данные сохранятся персистентно. Этот durable log является частью блока Performance Leg, который спроектирован для того, чтобы операции записи сохранялись быстро и в первую очередь.
Performance Leg представляет собой конфигурацию уровня RAID-1, принимающую операции записи, которые мгновенно подтверждаются со стороны хранилища, а потом на нижнем уровне данные распределяются уже как избыточный страйп (RAID 5/6) на Capacity Leg. Для этого Performance Leg собирает stripe write размером 512 КБ и отсылает эти блоки на Capacity Leg, ну а для подстраховки этих процессов на случай сбоев у нас всегда есть durable log. Такая схема позволяет достичь наилучшего баланса с точки зрения производительность/доступная емкость в VMware vSAN 8.
Ну и посмотрите интересное видео от Дункана на эту тему:
Дункан Эппинг недавно рассказал о том, как работает сжатие и дедупликация в рамках этой архитектуры. Напомним, что главное отличие ESA от OSA (Original Storage Architecture) заключается в том, что она позволяет достичь максимальных показателей производительности и эффективности на базе высокопроизводительных систем хранения, таких как флэш-память TLC на основе технологии NVMe.
Ключевыми структурными особенностями vSAN 8 ESA является переработанная и запатентованная файловая система (log-structured file system, LFS), новый оптимизированный для записи менеджер объектов (log-structured object manager), а также новый формат дисковых объектов.
Итак, в архитектуре OSA сжатие и дедупликация срабатывают непосредственно до того, как данные сохраняются на диск на каждом из хостов, где они в итоге оказываются. В vSAN ESA сжатие данных (compression) включено по умолчанию и работает все время на самом верхнем уровне архитектуры (до низких уровней слоев vSAN), как показано на диаграмме ниже:
Суть изменения заключается в том, что данные сначала сжимаются, а только потом передаются по сети. Например, вы сжимаете блок 4К до 2К, и далее он отправляется в сеть. Это требует меньше канала, а также меньше ресурсов на шифрование - вам нужно посчитать контрольную сумму для 2К блока вместо 4К.
Сжатие данных происходит только на исходном хосте, а целевой хост отвечает только за их помещение на диски. Это уменьшает совокупное потребление ресурсов и более эффективно расходует пропускную способность сети.
При создании политики хранения на вкладке Storage rules вы можете выбрать один из четырех вариантов сжатия:
No Preference (по умолчанию)
No space efficiency
Compression only
Deduplication and compression
Надо отметить, что дедупликация данных еще не реализована для архитектуры ESA, поэтому вариант Deduplication and compression не актуален на данный момент.
Итак, как мы уже сказали компрессия включена по умолчанию, поэтому она будет работать при выбранных вариантах No Preference и
Compression only. Если вы выберете No space efficiency, то сжатие данных будет отключено.
Дункан создал 3 виртуальных машины и три политики хранения. Машина VM_CompDisabled получила политику "Comp_Disabled", где выбран вариант "No space efficiency".
Пока нет способа в интерфейсе увидеть, включено реально ли сжатие в рамках политики или нет, но вы можете воспользоваться следующей командой, указал UUID объекта из скриншота выше:
cmmds-tool find -t DOM_OBJECT -u <UUID>
Если в выводе команды вы найдете строку ("compressionState" i1), то это значит, что компрессия данных отключена:
Еще один момент - так как компрессия работает на верхнем уровне и не имеет связи с оборудованием и компонентами хостов ESXi, то при изменении политики хранения не происходит переработки уже записанных данных. Просто все новые данные, приходящие на источник, начинают (или прекращают) сжиматься и в этом виде попадают на хранилища.
Таги: VMware, vSAN, ESA, Storage, Compression, VMachines, Blogs
На сайте проекта VMware Labs обновилось средство HCIBench до версии 2.8.0. Напомним, что оно предназначено для проведения комплексных тестов производительности отказоустойчивых кластеров хранилищ VMware vSAN, а также других конфигураций виртуальной инфраструктуры. О прошлой версии HCIBench 2.6 мы писали вот тут.
Суть работы HCIbench проста - пользователь задает параметры работы скрипта, а утилита дает команду средству Vdbench, содержащую инструкции о том, какие действия необходимо выполнить в кластере хранилищ. Это может вам пригодиться, например, когда вы хотите убедиться, что развернутая инфраструктура обеспечивает достаточную производительность для планируемой на нее нагрузки.
Давайте посмотрим, что нового в HCIBench 2.8.0:
Компонент fio обновлен до версии 3.30
Добавлен целевой параметр latency для fio
Исправлена уязвимость CVE-2021-40438
Добавлен vSAN support bundle graph для режима vSAN Debug mode
Улучшен отчет об использовании ресурсов
Добавлена поддержка возможности тестирования vSAN 8 ESA
Исправлена ошибка при тестировании на архитектуре VMware Cloud
Недавно мы писали о новой схеме релизов платформы VMware vSphere. Согласно ей, вводится два типа выпусков - IA (Initial Availability) и GA (General Availability), которые позволяет выровнять схему релизов с продуктами облачной линейки Cloud Services в рамках доступной пользователям подписки vSphere+.
Вчера VMware объявила о доступности vSphere 8 Initial Availability - продукт можно скачать по этой ссылке. О возможностях новой версии платформы мы писали вот тут.
IA-релиз - это полностью Enterprise-ready продукт, который соответствует всем промышленным стандартам VMware уровня релиза GA, но доступен он, как правило, на 4-6 недель раньше, чтобы собрать условия его применения от клиентов (и, конечно же, критичные для инфраструктуры баги). В этот промежуток времени будут публиковаться все найденные важные проблемы.
Ставить этот релиз в производственной среде вы можете, но это не рекомендуется. Пока его лучше обкатывать на тестовых серверах и смотреть, как все работает (особенно новый функционал платформы). После выхода vSphere 8 General Availability можно смело устанавливать продукт на свои производственные серверы, так как все критичные проблемы первоначального релиза будут уже решены.
На сайте проекта VMware Labs обновилась полезная утилита vSAN Hardware Compatibility List Checker 3.0, предназначенная для проверки соответствия хостов ESXi требованиям списка совместимости для узлов кластера vSAN. О прошлой версии этой утилиты мы писали вот тут.
Что нового в vSAN HCL Checker 3.0:
Новая таблица Summary, где можно увидеть, какие устройства совместимы с vSAN и vSAN ESA в рамках общего отчета
Проверка совместимости оборудования для режима vSAN ESA (Express Storage Architecture), начиная с версии ESXi 8.0
Поправлен формат отчета
Исправления ошибок, в том числе с обнаружением контроллеров
Для vSAN проверяются Storage adapters на хранилищах, а для режима vSAN ESA проверяются также скорость физических сетевых соединений (суммарно 25 Gbps и более) и размер памяти хостов (32 ГБ и более).
vSAN ESA (Express Storage Architecture)
Storage adapters
Physical NIC link speed
Host memory size
Также отметим, что в версии 2.2 появилась поддержка Windows, Linux и MacOS для запуска утилиты.
Для начала работы нужно просто запустить утилиту и в интерактивном режиме ввести имя хоста ESXi и пароль пользователя root:
В качестве результата в папке с утилитой будет сформирован html-файл (этот шаблон можно редактировать в файле reportTemplate.html), в котором будет информация о совместимости контроллеров хранилищ со списком vSAN HCL (шильдики yes и N/A).
Скачать VMware vSAN Hardware Compatibility List Checker 3.0 можно по этой ссылке.
В конце лета этого года компания VMware провела конференцию Explore 2022, где представила новую версию решения для создания отказоустойчивых хранилищ VMware vSAN 8. Главным нововведением обновленной платформы стала архитектура Express Storage Architecture (ESA), которая позволяет достичь максимальных показателей производительности и эффективности на базе высокопроизводительных систем хранения. Сегодня мы посмотрим, какие улучшения механизма работы снапшотов появились в vSAN, работающем в ESA-варианте.
Еще много лет назад мы писали о том, что снапшоты - это зло, и использовать их нужно с большой осторожностью и при большой необходимости. Например, перед обновлением виртуального аппаратного обеспечения, ОС или критичных приложений можно сделать снапшот, проверить что все в порядке после обновления, а затем удалить его.
Снапшоты, создаваемые для специфических целей администраторов, часто разрастаются в разных ветках, что в итоге приводит к падению производительности виртуальной машины и операционным сложностям при консолидации (например, недостаток места). При этом снапшоты - это вещь нужная для таких процессов, как резервное копирование и автоматизированные рабочие процессы Continuous Integration/Continuous Delivery (CI/CD), Copy Data Management (CDM), а также управление виртуальными ПК VMware Horizon.
Часто в большой инфраструктуре VMware vSphere можно обязательно найти вот такую машину, которая "почему-то тормозит":
Традиционно снапшоты в VMware vSphere строились на базе технологии redo-log (дельта диск отличий от основного VMDK), которая имеет ограничения по масштабируемости и производительности. Снапшоты типа VMFSsparse использовались по умолчанию в файловой системе VMFS5 для дисков менее 2 ТБ и для всех дисков на системах до VMFS5.
VMFSsparse работает поверх VMFS как redo-log, который создается пустым, как только для ВМ создается снапшот, и растет до размера родительского VMDK-диска, накапливая данные. Начиная с VMFS5, для дисков более 2 ТБ и для всех дисков VMFS6 был добавлен формат снапшота VMFS SEsparse. Это эволюционное изменение снапшотов, которое давало улучшения в плане склеивания снапшотов и в отношении их больших цепочек, где ранее происходила потеря производительности.
Также для SEsparse снапшотов было сделано множество улучшений в новых версиях vSphere, например, при чтении данных для машин со снапшотами была существенно увеличена производительность: чтение идет сразу из нужного VMDK, минуя всю цепочку снапшотов при каждом обращении, в отличие от того, как это было сделано раньше. Все это снижает latency на чтение:
Также были сделаны некоторые оптимизации "подмораживания" (stun) при различного рода операциях со снапшотами, а также специфические технологии, такие как Mirror driver, но концептуально суть снапшотов не поменялась. Поэтому VMware продолжала давать рекомендации не хранить их более 48 часов и не создавать длинных цепочек снапшотов, особенно для критичных нагрузок.
Архитектура снапшотов в vSAN базируется на традиционных redo-log снапшотах, которые были доработаны - так появился формат vsanSparse (начиная с vSAN 6). Он использует механизм redirect-on-write и снижает некоторые технические ограничения снапшотов за счет кэширования, но проблемы подмораживания и долгого времени удаления снапшотов остаются.
В новой версии vSAN 8 при использовании архитектуры ESA, снапшоты используются совершенно другим образом, нежели в прошлых версиях платформы. Вместо использования традиционной цепочки базового и дельта-дисков, механизм снапшотов использует lookup table, применяя структуры B-Tree.
Файловая система log structured file system в vSAN ESA позволяет новым операциям записи помещаться в новые сегменты хранилища с их указателями метаданных, интеллектуально размещая их в соответствии с принадлежностью к снапшотам. В этом случае время удаления снапшота снижается более чем в 100 раз по сравнению с прошлыми версиями платформы vSAN.
Также новая архитектура снапшотов снижает и накладные расходы на вычисления и перемещения данных, которые происходят при удалении снапшотов (а это были одни из самых нагружающих инфраструктуру операций). По-сути, когда в vSAN 8 удаляется снапшот, происходит лишь удаление метаданных, а физического перемещения блоков не происходит.
Мало того, пользователь получает подтверждение удаления снапшота сразу же, а удаление данных и метаданных происходит позже, в асинхронном режиме. Новая архитектура снапшотов ESA позволяет использовать практически неограниченное количество снапшотов - однако текущие параметры платформы vSphere ограничивают число снапшотов числом 32 на один объект.
Как знают администраторы VMware vSphere, решения для резервного копирования используют снапшоты через vSphere Storage API (также называемые VADP) для передачи резервных копий на хранилища. Новая функциональность vSAN ESA автоматически заменит старый механизм снапшотов, а пользователи увидят реальный прирост производительности при консолидации снапшотов, а также при работе продуктов VMware SRM и vSphere Replication в кластерах ESA.
Таги: VMware, vSAN, Update, Snapshots, Storage, ESA, Performance
На конференции VMware Explore 2022 компания VMware объявила о выпуске решения для организации отказоустойчивых кластеров виртуальных хранилищ VMware vSAN 8. Напомним, что прошлая мажорная версия VMware vSAN 7 была выпущена в марте 2020 года. Вчера мы писали о новых возможностях VMware vSphere 8, а сегодня поговорим о решении vSAN 8, которое очень тесно интегрировано с vSphere.
Итак, что нового появилось в VMware vSAN 8.0:
Новая архитектура vSAN Express Storage Architecture
В vSAN 8 появилась новая архитектура гиперконвергентной инфраструктуры vSAN Express Storage Architecture (ESA). Она позволяет достичь максимальных показателей производительности и эффективности на базе высокопроизводительных систем хранения.
С помощью флэш-памяти TLC на основе технологии NVMe, архитектура ESA имеет множество преимуществ со стандартной vSAN Original Storage Architecture (OSA), которая также продолжит поддерживаться для стандартного на текущий момент оборудования (устройства SATA/SAS).
Ключевыми структурными особенностями vSAN 8 ESA является переработанная и запатенованная файловая система (log-structured file system, LFS), новый оптимизированный для записи менеджер объектов (log-structured object manager), а также новый формат дисковых объектов.
Эти технологии позволяют добиться такого уровня производительности, где практически не происходит потерь на поддержание слоя виртуализации.
Новые возможности ESA дают преимущества в следующих аспектах:
1. Performance without tradeoff
Здесь есть два основных момента, существенно увеличивающих производительность:
Изменение структуры хранения и обработки данных для алгоритмов RAID 5/6 erasure coding. Теперь производительность RAID 5/6 близка к таковой на базе RAID-1. За счет LFS и нового формата дисковых объектов обеспечивается высокая интеграция данных и устойчивость к отказам при сохранении высокой скорости канала чтения-записи.
Intelligent I/O traffic management для сетевого трафика vSAN - теперь скорость процессинга трафика ввода-вывода близка к нативной для используемых устройств. Это достигается, в том числе, за счет адаптивной приоритизации трафика и его отсылки в моменты наименьшей загрузки канала.
2. Supreme resource and space efficiency
Адаптивный алгоритм обработки данных на RAID-5, который проверяет количество хостов в кластере и выбирает оптимальный способ размещения данных (работает, начиная с трех хостов). vSAN ESA также имеет возможности обнаружения изменений хостов, что влечет за собой ревизию структур данных RAID-5 и изменения политик размещения данных. В этом случае RAID-5 использует меньше сырой емкости хранилищ при сохранении надежности и управляемости.
Кликните на картинку, чтобы открыть анимацию:
Также были полностью переработаны механизмы сжатия данных, чтобы оптимизировать загрузку сети и нагрузку на CPU. Компрессия включена по умолчанию, и ее настройки можно изменять на уровне отдельных виртуальных машин с помощью политик хранилищ, вместо изменения конфигурации на уровне кластера.
Нажмите на картинку для открытия анимации:
Новый метод сжатия дает до 4x улучшение для каждого блока размером 4KB, если сравнивать с Original Storage Architecture. Также нагрузка на CPU существенно меньше у ESA, чем у OSA.
Шифрование данных также происходит теперь на верхних слоях ядра vSAN. Поскольку шифрование проводится для уже сжатых данных, то процесс шифрования происходит только однажды, что означает, что потоки данных между хостами также зашифрованы. Это позволяет избавиться от лишних шагов decrypt/encrypt и дает меньше нагрузки на CPU и сеть, освобождая ресурсы на поддержание работы виртуальных машин.
3. Intuitive, agile operations
Здесь два основных момента:
Storage pool construct - vSAN 8 ESA, помимо концепции дисковых групп, дискретного кэширования и ярусов емкостей (capacity tiers), дает пользователям возможность объединить устройства в пул (storage pool), в котором все устройства пула хоста могут давать емкость в общую емкость инфраструктуры vSAN. Это упрощает операции по обслуживанию дисков и управлению доступностью данных (а также снижает затраты).
Упрощенное развертывание и оперирование ресурсами хранилищ - теперь появились автоматические проверки, которые позволяют понять, что архитектура ESA запущена на поддерживаемом оборудовании. Это уменьшит количество проблемных инсталляций.
4. Ready-for-anything resilience
Этот пункт включает в себя масштабируемые и высокопроизводительные снапшоты, которые теперь делаются быстро и эффективно. Теперь снапшоты не так драматически влияют на производительность виртуальных машин, а время консолидации снапшотов уменьшилось очень значительно. Возможность native snapshot будет доступна не только в vSphere, но и для сторонних решений, использующий фреймворк VADP для резервного копирования ВМ.
Стандартная архитектура vSAN Original Storage Architecture
Классический vSAN 8 увеличил логический лимит емкости буффера почти в три раза - с 600 ГБ до 1.6 ТБ. Это позволит получит преимущества более плотного размещения виртуальных машин при сохранении требуемого уровня производительности. Рабочие нагрузки теперь могут поддерживать режим максимальной производительности в течение больших периодов времени.
Обе архитектуры vSAN - ESA и OSA
vSAN Proactive insights capability - пользователи vSAN 8 теперь получили более высокий уровень совместимости за счет функционала proactive insights, который оповещает обо всех потенциальных проблемах совместимости программного обеспечения и оборудования, даже если оно не участвует в программе Customer Experience Improvement Program. Эти улучшения доступны для обеих архитектур.
Итого прогресс технологии VMware vSAN за 10 лет можно представить вот так:
Доступность для скачивания продуктов VMware Cloud Foundation+, VMware vSphere 8, VMware vSAN 8 и VMware Edge Compute Stack 2 ожидается до 28 октября 2022 года.
Также рекомендуем посмотреть техническое видео о нововведениях vSAN:
Одним из нововведений новой версии решения для обеспечения катастрофоустойчивости виртуальной инфраструктуры хранения VMware vSAN 7.0 Update 3 стал улучшенный механизм по обработке последовательных отказов. Называется он Enhanced Data Durability.
Он позволяет еще больше защитить кластер хранилищ от аварий и сбоев, которые могут происходить не в один момент, а друг за другом на протяжении некоторого времени.
Нужен он для того, чтобы в ситуации, когда отказывает одна из площадок vSAN, а потом и компонент Witness (например, в случае массового сбоя сети или аварии другой природы), хосты выжившего кластера могли продолжить работу.
Проиллюстрируем это на примере, который привел Дункан Эппинг. Предположим, у нас есть вот такая инфраструктура:
И вот у нас отказывает полностью один из датацентров. В консоли RVC мы увидим следующее:
Здесь мы видим, что у нас 1 голос на каждый из дисковых компонентов основной площадки (итого 2), 3 голоса на Witness и 2 голоса на резервной площадке.
Теперь представим, что все хосты резервной площадки отказывают полностью. У нас остается 2+3=5 голосов из 7, то есть кворум есть, все в порядке (для обеспечения кворума нужно больше 50% голосов). Но вот если у нас после этого откажет компонент Witness, имеющий 3 голоса, то у нас останется только 2 голоса из 7, кворума не будет - и это может привести к проблемам в кластере.
Для этого в vSAN 7 Update 3 сделали механизм пересчета голосов. Посмотрим на то, как выглядит картина через 5 минут после отказа резервной площадки в консоли RVC:
Итак, мы видим, что каждый из дисковых компонентов получил по 3 голоса. Компонент Witness вне площадок получил 1 голос вместо 3, а компонент Witness, поднявшийся на основной площадке также получил 3 голоса.
Теперь, если внешний компонент Witness упадет, то кворум кластера все равно будет соблюден, а машины продолжат исполняться на основной площадке. Если же резервная площадка снова войдет в строй, то голоса в кластере снова будут пересчитаны таким образом, чтобы соблюсти статус кво.
Как долго происходит пересчет голосов в кластере? Это зависит от количества дисковых объектов, голоса которых учитываются. В среднем на одну ВМ приходится по несколько секунд вычислений, поэтому общая реконфигурация состава голосов может занять до 5 минут. Зато в этом случае кластер будет более устойчив к отказам, которые в реальной жизни могут происходить один за другим.
Таги: VMware, vSAN, Update, HA, DR, VMachines, Storage
Известные блогеры, пишущие о платформе виртуализации VMware vSphere и системе отказоустойчивых хранилищ VMware vSAN - Дункан Эппинг и Кормак Хоган - обновили свою совместную книгу, посвященную расширенным настройкам инфраструктуры хранения - VMware vSAN Deep Dive 7.0 Update 3.
На 632 страницах Дункан и Кормак разбирают все самые полезные и глубокие настройки инфраструктуры отказоустойчивых хранилищ, с учетом последних нововведений, появившихся в vSAN 7 Update 3. Кстати, последняя версия книги была для vSAN 6.7 U1, поэтому обновление очень актуально именно сегодня. В книге рассматриваются все новые технологии, такие как vSAN File Service и HCI-Mesh.
Также не обошли стороной такие вещи, как поддержка режима Compression Only, Durability Components и изменения, связанные с функционалом резервирования ресурсов и Capacity Management. В книге рассматривается не только развертывание и первоначальная настройка отказоустойчивых кластеров хранения, но и Day-2 операции, связанные с решением задач, возникающих в процессе ежедневной эксплуатации платформы.
Книга в электронном варианте стоит 12 долларов, с подпиской Kindle Unlimited ее можно получить бесплатно.
Мы много пишем про растянутые кластеры VMware vSAN Stretched Clusters для онпремизной инфраструктуры VMware vSphere, но не особо затрагивали тему растянутых кластеров в публичных облаках. В частности, в инфраструктуре VMware Cloud on AWS можно создавать такие кластеры, работающие на уровне зон доступности (Availability Zones).
Облачные администраторы знают, что публичное облако AWS разделено на регионы (Regions), в рамках которых есть зоны доступности (Availability Zones, AZ), представляющие собой домены отказа (аналогичные таковым в vSAN). То есть если произойдет сбой (что довольно маловероятно), он затронет сервисы только одной зоны доступности, остальные AZ этого региона продолжат нормально функционировать.
Сама Amazon рекомендует дублировать критичные сервисы на уровне разных зон доступности, а с помощью растянутых кластеров VMware vSAN можно сделать полноценную задублированную среду на уровне AZ в рамках одного региона с компонентом Witness для защиты от ситуации Split-brain, когда будет разорвана коммуникация между зонами:
Для такой конфигурации вам потребуется создать SDDC с поддержкой Stretched Cluster, который создается на этапе настройки SDDC на платформе VMC on AWS. Надо понимать, что при развертывании SDDC можно задать тип кластера Standard или Stretched, который уже нельзя будет поменять в дальнейшем.
Пользователь задает AWS Region, тип хоста, имя SDDC и число хостов, которые он хочет развернуть. Далее администратор выбирает аккаунт AWS и настраивает VPC-подсеть, привязывая ее к логической сети для рабочих нагрузок в аккаунте. Нужно выбрать 2 подсети для обслуживания двух зон доступности. Первая устанавливается для preferred-площадки vSAN, а вторая помечается как сеть для "non-preferred" сайта.
После создания кластера, когда вы зайдете в инстанс Multi-AZ SDDC vCenter вы увидите растянутый кластер vSAN с одинаковым числом узлов на каждой из AZ и один компонент Witness, находящийся за пределами данных AZ.
Такая конфигурация работает как Active-Active, то есть вы можете помещать производственные виртуальные машины в каждую из зон, но вам нельзя будет использовать более 50% дисковой емкости для каждой из облачных площадок.
Конечно же, нужно позаботиться и о защите виртуальных машин как на уровне площадки, так и на уровне растянутого кластера. Лучше всего использовать политику хранения "Dual site mirroring (stretched cluster)" на уровне ВМ. В этом случае при сбое виртуальной машины в рамках одной зоны доступности она будет автоматически перезапущена в другой AZ с помощью механизма VMware HA.
Также администратору надо контролировать физическое размещение виртуальных машин по площадкам, а также политику Failures to tolerate (FTT):
Конечно же, не все виртуальные машины нужно реплицировать между площадками - иначе вы просто разоритесь на оплату сервисов VMConAWS. Администратор должен выставить правила site affinity rules, которые определяют, какие машины будут реплицироваться, а какие нет. Делается это с помощью движка политик storage policy-based management (SPBM) для ВМ и их VMDK-дисков:
Этой осенью мы писали о новых возможностях флагманской платформы виртуализации компании VMware - vSphere 7 Update 3 и Update 3a. При этом мы забыли рассказать о новой версии платформы для создания отказоустойчивых хранилищ VMware vSAN 7 Update 3. Сегодня мы закроем этот пробел.
Итак, вот какие новые возможности были добавлены в VMware vSAN 7 Update 3:
1. Cluster Shutdown
Эта функция позволяет вам погасить все хосты кластера для проведения обслуживания, даже в том случае, если они исполняют серверы vCenter. Для начала процедуры выключения хостов нужно выбрать пункт "shutdown cluster" из контекстного меню кластера и запустить двухшаговый мастер.
На первом этапе пройдут предпроверки, которые убеждаются в том, что в данный момент нет активных задач ресинхронизации, отсутствуют хосты в режиме обслуживания, служебные ВМ выключены и другое:
2. Поддержка vLCM для виртуального модуля Witness Appliance
Теперь жизненной цикл виртуальной машины Witness Appliance в кластере можно обслуживать с помощью vSphere Lifecycle Manager (делать апгрейд и прочее).
3. Функции Skyline Health Correlation
С помощью возможности Skyline Health Correlation пользователи, которые видят множество срабатывающих в кластере алармов, понимают, что им нужно сделать. В vSAN 7 U3 можно понять корреляцию между событиями и сделать вывод о наиболее вероятной проблеме. Далее уже можно приступать к поиску корневой причины.
4. Возможность IO Trip Analyzer
IO Trip Analyzer - это средства, которые позволяют посмотреть информацию о задержках (latency) на каждом из уровней в форме диаграммы. Вот небольшой обзор этого инструмента от Дункана Эппинга:
5. Вложенные домены отказа Nested Fault Domains для 2-узловых кластеров
Домены Nested Fault Domains для 2-узловых кластеров предназначены для пользователей, которые хотят получить устойчивую к отказам конфигурацию на базе всего двух хостов ESXi. Для этого нужно иметь как минимум 3 дисковых группы на хост на каждом из узлов, после чего создается массив RAID-1 между этими двумя хостами, а также RAID-1 внутри каждого из хостов (можно также использовать RAID-5, если у вас достаточное количество дисковых групп). Если упадет один из хостов ESXi, а потом и еще один из дисков на выжившем хосте - то виртуальные машины все равно продолжат работать.
6. Функции Enhanced Stretched Cluster Durability
Мы уже писали о возможностях Enhanced Data Durability для кластеров vSAN, позволяющих еще больше защитить кластер хранилищ от аварий и сбоев, которые могут происходить не в один момент, а друг за другом на протяжении некоторого времени.
Теперь функции Enhanced Stretched Cluster Durability позволяют обработать ситуацию, когда отказывает одна из площадок растянутого кластера, а после этого и компонент Witness сторонней площадки. В этом случае ВМ растянутого кластера ранее оказывались недоступны, потому что последовательно происходил отказ двух из трех компонентов RAID растянутого кластера. В случае одновременного отказа сайта и компонента Witness происходила блокировка второго сайта и для обеспечения консистентности данных и защиты от ситуации Split Brain. Теперь же происходит обработка и ситуации последовательного отказа сайта и Witness.
В этом случае обеспечивается строгая консистентность данных виртуальных машин, так как упавший сайт может лежать достаточно долго.
Если все дисковые объекты виртуальных машин сохранились на работающей площадке, то даже в случае недоступности Witness все виртуальные машины продолжат свою нормальную работу. Более подробно об этой возможности Дункан рассказал вот тут.
7. Механизм Access Based Enumeration для SMB-шар через службы vSAN File Services
До vSAN Update 3, если пользователь имел доступ к SMB-шаре, то он мог просматривать список всех ее каталогов. Теперь же с помощью Access Based Enumeration для служб vSAN File Services пользователь видит только назначенные ему папки.
Посмотреть полный список новых возможностей VMware vSAN 7 Update 3 можно в Release Notes, а загрузить продукт можно по этой ссылке.
Также в комментариях поделились полезным видео от русской команды VMware, где рассказывается не только о новых возможностях vSAN 7 Update 3, но и о нововведениях vSphere и Tanzu в новом апдейте:
Дункан Эппинг написал интересную заметку о том, как работают Storage Rules для политик хранения виртуальных машин в кластерах VMware vSAN (VM Storage Policies).
В большой инфраструктуре или, например, в топологии HCI Mesh часто встречается такая ситуация, когда некоторые кластеры построены на базе гибридных хостов (SSD+HDD), а некоторые на базе All-Flash оборудования. Также в зависимости от типа железа, эти кластеры могут предоставлять различные сервисы (например, шифрование или дудпликацию), которые могут использовать виртуальные машины.
Когда вы создаете VM Storage Policy в решении VMware vSAN, то, начиная с vSAN 7.0 U2, вы можете задать Storage Rules для данной политики на отдельной вкладке:
Эти настройки влияют вот на что: когда вы назначаете политику хранения виртуальной машине, у которой, например, выбран пункт "data-at-rest encryption" в качестве поддерживаемых сервисов хранилищ, то в качестве совместимых будут показаны только те хранилища, у которых реально предоставляется этот сервис со стороны оборудования. То есть эта вкладка нужна для того, чтобы обеспечить исполнение требований со стороны железа по сервисам перечисленным здесь (а именно: шифрование, компрессия, компрессия+дедупликация, размещение на гибридном/All-Flash хосте) для виртуальных машин, которым назначается политика.
То есть, Storage Rules - это поддержка тех сервисов, которые должны быть уже включены на ваших датасторах. Они работают именно на уровне vSAN Datastore и не применяются к сервисам данных (data services) на базе виртуальной машины или VMDK-дисков.